171 research outputs found

    On the reduction of pseudo-differential operators to canonical forms

    Get PDF

    Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions

    Full text link
    In connection with the weak null condition, Alinhac introduced a sufficient condition for global existence of small amplitude solutions to systems of semilinear wave equations in three space dimensions. We introduce a slightly weaker sufficient condition for the small data global existence, and we investigate the asymptotic pointwise behavior of global solutions for systems satisfying this condition. As an application, the asymptotic behavior of global solutions under the Alinhac condition is also derived.Comment: 56 pages, the final versio

    Global Solutions for Incompressible Viscoelastic Fluids

    Full text link
    We prove the existence of both local and global smooth solutions to the Cauchy problem in the whole space and the periodic problem in the n-dimensional torus for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial data. The results hold in both two and three dimensional spaces. The results and methods presented in this paper are also valid for a wide range of elastic complex fluids, such as magnetohydrodynamics, liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy problem for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial dat

    Generalized harmonic spatial coordinates and hyperbolic shift conditions

    Get PDF
    We propose a generalization of the condition for harmonic spatial coordinates analogous to the generalization of the harmonic time slices introduced by Bona et al., and closely related to dynamic shift conditions recently proposed by Lindblom and Scheel, and Bona and Palenzuela. These generalized harmonic spatial coordinates imply a condition for the shift vector that has the form of an evolution equation for the shift components. We find that in order to decouple the slicing condition from the evolution equation for the shift it is necessary to use a rescaled shift vector. The initial form of the generalized harmonic shift condition is not spatially covariant, but we propose a simple way to make it fully covariant so that it can be used in coordinate systems other than Cartesian. We also analyze the effect of the shift condition proposed here on the hyperbolicity of the evolution equations of general relativity in 1+1 dimensions and 3+1 spherical symmetry, and study the possible development of blow-ups. Finally, we perform a series of numerical experiments to illustrate the behavior of this shift condition.Comment: 18 pages and 12 figures, extensively revised version explaining in the new Section IV how the shift condition can be made 3-covarian

    Wave equation with concentrated nonlinearities

    Full text link
    In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field VV on an open subset of \CO^n and a discrete set Y\subset\RE^3 with nn elements, we define a nonlinear operator ΔV,Y\Delta_{V,Y} on L^2(\RE^3) which coincides with the free Laplacian when restricted to regular functions vanishing at YY, and which reduces to the usual Laplacian with point interactions placed at YY when VV is linear and is represented by an Hermitean matrix. We then consider the nonlinear wave equation ϕ¨=ΔV,Yϕ\ddot \phi=\Delta_{V,Y}\phi and study the corresponding Cauchy problem, giving an existence and uniqueness result in the case VV is Lipschitz. The solution of such a problem is explicitly expressed in terms of the solutions of two Cauchy problem: one relative to a free wave equation and the other relative to an inhomogeneous ordinary differential equation with delay and principal part ζ˙+V(ζ)\dot\zeta+V(\zeta). Main properties of the solution are given and, when YY is a singleton, the mechanism and details of blow-up are studied.Comment: Revised version. To appear in Journal of Physics A: Mathematical and General, special issue on Singular Interactions in Quantum Mechanics: Solvable Model

    A simple method for finite range decomposition of quadratic forms and Gaussian fields

    Full text link
    We present a simple method to decompose the Green forms corresponding to a large class of interesting symmetric Dirichlet forms into integrals over symmetric positive semi-definite and finite range (properly supported) forms that are smoother than the original Green form. This result gives rise to multiscale decompositions of the associated Gaussian free fields into sums of independent smoother Gaussian fields with spatially localized correlations. Our method makes use of the finite propagation speed of the wave equation and Chebyshev polynomials. It improves several existing results and also gives simpler proofs.Comment: minor correction for t<

    Exponential decay for the damped wave equation in unbounded domains

    Full text link
    We study the decay of the semigroup generated by the damped wave equation in an unbounded domain. We first prove under the natural geometric control condition the exponential decay of the semigroup. Then we prove under a weaker condition the logarithmic decay of the solutions (assuming that the initial data are smoother). As corollaries, we obtain several extensions of previous results of stabilisation and control

    Spectral stability of noncharacteristic isentropic Navier-Stokes boundary layers

    Full text link
    Building on work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or "shock-like", boundary layers of the isentropic compressible Navier-Stokes equations with gamma-law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our results indicate stability for gamma in the interval [1, 3] for all compressive boundary-layers, independent of amplitude, save for inflow layers in the characteristic limit (not treated). Expansive inflow boundary-layers have been shown to be stable for all amplitudes by Matsumura and Nishihara using energy estimates. Besides the parameter of amplitude appearing in the shock case, the boundary-layer case features an additional parameter measuring displacement of the background profile, which greatly complicates the resulting case structure. Moreover, inflow boundary layers turn out to have quite delicate stability in both large-displacement and large-amplitude limits, necessitating the additional use of a mod-two stability index studied earlier by Serre and Zumbrun in order to decide stability

    Local and Global Analytic Solutions for a Class of Characteristic Problems of the Einstein Vacuum Equations in the "Double Null Foliation Gauge"

    Full text link
    The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem due to the intrinsic hyperbolicity of the Einstein equations. To prove this result we first describe a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering, in a gauge characterized by the introduction of a double null cone foliation of the spacetime. Then we prove that the existence region for the analytic solutions can be extended to a larger region which depends only on the validity of the apriori estimates for the Weyl equations, associated to the "Bel-Robinson norms". In particular if the initial data are sufficiently small we show that the analytic solution is global. Before showing how to extend the existence region we describe the same result in the case of the Burger equation, which, even if much simpler, nevertheless requires analogous logical steps required for the general proof. Due to length of this work, in this paper we mainly concentrate on the definition of the gauge we use and on writing in a "geometric" way the Einstein equations, then we show how the Cauchy-Kowalevski theorem is adapted to the characteristic problem for the Einstein equations and we describe how the existence region can be extended in the case of the Burger equation. Finally we describe the structure of the extension proof in the case of the Einstein equations. The technical parts of this last result is the content of a second paper.Comment: 68 page
    • …
    corecore