24 research outputs found
IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination
Vaccination induces immunostimulatory signals that are often accompanied
by regulatory mechanisms such as IL-10, which control T-cell activation and
inhibit vaccine-dependent antitumor therapeutic effect. Here we characterized IL-
10-producing cells in different tumor models treated with therapeutic vaccines.
Although several cell subsets produced IL-10 irrespective of treatment, an early
vaccine-dependent induction of IL-10 was detected in dendritic cells (DC). IL-10
production defined a DC population characterized by a poorly mature phenotype,
lower expression of T-cell stimulating molecules and upregulation of PD-L1. These
IL-10+ DC showed impaired in vitro T-cell stimulatory capacity, which was rescued
by incubation with IL-10R and PD-L1-inhibiting antibodies. In vivo IL-10 blockade
during vaccination decreased the proportion of IL-10+ DC and improved their
maturation, without modifying PD-L1 expression. Similarly, PD-L1 blockade did not
affect IL-10 expression. Interestingly, vaccination combined with simultaneous
blockade of IL-10 and PD-L1 induced stronger immune responses, resulting in a higher
therapeutic efficacy in tumor-bearing mice. These results show that vaccine-induced
immunoregulatory IL-10+ DC impair priming of antitumor immunity, suggesting that
therapeutic vaccination protocols may benefit from combined targeting of inhibitory
molecules expressed by this DC subset
Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocytedeficient mice reconstituted with human NK cells
Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNɣ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival
A new regulatory mechanism of protein phosphatase 2A activity via SET in acute myeloid leukemia
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy. Although novel emerging drugs are available, the overall prognosis remains poor and new therapeutic approaches are required. PP2A phosphatase is a key regulator of cell homeostasis and is recurrently inactivated in AML. The anticancer activity of several PP2A-activating drugs (e.g., FTY720) depends on their interaction with the SET oncoprotein, an endogenous PP2A inhibitor that is overexpressed in 30% of AML cases. Elucidation of SET regulatory mechanisms may therefore provide novel targeted therapies for SET-overexpressing AMLs. Here, we show that upregulation of protein kinase p38 beta is a common event in AML. We provide evidence that p38 beta potentiates SET-mediated PP2A inactivation by two mechanisms: facilitating SET cytoplasmic translocation through CK2 phosphorylation, and directly binding to and stabilizing the SET protein. We demonstrate the importance of this new regulatory mechanism in primary AML cells from patients and in zebrafish xenograft models. Accordingly, combination of the CK2 inhibitor CX-4945, which retains SET in the nucleus, and FTY720, which disrupts the SET-PP2A binding in the cytoplasm, significantly reduces the viability and migration of AML cells. In conclusion, we show that the p38 beta/CK2/SET axis represents a new potential therapeutic pathway in AML patients with SET-dependent PP2A inactivation
In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis
Bulk ex vivo and single-cell in vivo CRISPR knockout screens are used to characterize 680 chromatin factors during mouse hematopoiesis, highlighting lineage-specific and normal and leukemia-specific functions. Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis
The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma
The development of sensitive and non-invasive
‘‘liquid biopsies’’ presents new opportunities for
longitudinal monitoring of tumor dissemination and
clonal evolution. The number of circulating tumor
cells (CTCs) is prognostic in multiple myeloma
(MM), but there is little information on their genetic
features. Here, we have analyzed the genomic landscape
of CTCs from 29 MM patients, including eight
cases with matched/paired bone marrow (BM) tumor
cells. Our results show that 100% of clonal mutations
in patient BM were detected in CTCs and that 99% of
clonal mutations in CTCs were present in BM MM.
These include typical driver mutations in MM such
as in KRAS, NRAS, or BRAF. These data suggest
that BM and CTC samples have similar clonal structures,
as discordances between the two were
restricted to subclonal mutations. Accordingly, our
results pave the way for potentially less invasive
mutation screening of MM patients through characterization
of CTCs
Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance
Persistence of chemoresistant minimal residual disease (MRD) plasma cells (PCs) is associated with inferior survival in multiple myeloma (MM). Thus, characterization of the minor MRD subclone may represent a unique model to understand chemoresistance, but to our knowledge, the phenotypic and genetic features of the MRD subclone have never been investigated. Here, we compared the antigenic profile of MRD vs diagnostic clonal PCs in 40 elderly MM patients enrolled in the GEM2010MAS65 study and showed that the MRD subclone is enriched in cells overexpressing integrins (CD11a/CD11c/CD29/CD49d/CD49e), chemokine receptors (CXCR4), and adhesion molecules (CD44/CD54). Genetic profiling of MRD vs diagnostic PCs was performed in 12 patients; 3 of them showed identical copy number alterations (CNAs), in another 3 cases, MRD clonal PCs displayed all genetic alterations detected at diagnosis plus additional CNAs that emerged at the MRD stage, whereas in the remaining 6 patients, there were CNAs present at diagnosis that were undetectable in MRD clonal PCs, but also a selected number of genetic alterations that became apparent only at the MRD stage. The MRD subclone showed significant downregulation of genes related to protein processing in endoplasmic reticulum, as well as novel deregulated genes such as ALCAM that is prognostically relevant in MM and may identify chemoresistant PCs in vitro. Altogether, our results suggest that therapy-induced clonal selection could be already present at the MRD stage, where chemoresistant PCs show a singular phenotypic signature that may result from the persistence of clones with different genetic and gene expression profiles. This trial was registered at www.clinicaltrials.gov as #NCT01237249
Preneoplastic somatic mutations including MYD88(L265P) in lymphoplasmacytic lymphoma
Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88. We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88(L265P) in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymphoplasmacytic lymphoma in mice, based on mutated MYD88 in B cell precursors and BCL2 overexpression. Thus, MYD88(L265P) is a preneoplastic event, which challenges the current understanding of lymphomagenesis and may have implications for early detection of B cell lymphomas
Gene therapy restores the transcriptional program of hematopoietic stem cells in Fanconi anemia
Clinical trials have shown that lentiviral-mediated gene therapy can ameliorate bone marrow failure (BMF) in non-conditioned Fanconi anemia (FA) patients resulting from the proliferative advantage of corrected FA hematopoietic stem and progenitor cells (HSPC). However, it is not yet known if gene therapy can revert affected molecular pathways in diseased HSPC. Single-cell RNA sequencing was performed in chimeric populations of corrected and uncorrected HSPC co-existing in the BM of gene therapy-treated FA patients. Our study demonstrates that gene therapy reverts the transcriptional signature of FA HSPC, which then resemble the transcriptional program of healthy donor HSPC. This includes a down-regulated expression of TGF-β and p21, typically up-regulated in FA HSPC, and upregulation of DNA damage response and telomere maintenance pathways. Our results show for the first time the potential of gene therapy to rescue defects in the HSPC transcriptional program from patients with inherited diseases; in this case, in FA characterized by BMF and cancer predisposition
Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocytedeficient mice reconstituted with human NK cells
Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNɣ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival
Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins
Genome instability is related to disease development and carcinogenesis. DNA lesions are caused
by genotoxic compounds but also by the dysregulation of fundamental processes like transcription,
DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA–DNA hybrids
(R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key
mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle
arrest and severe mitotic derangements with loss of
sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the
generation of truncated forms of the splicing factor
SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant
negative, or by gain-of-function, SRSF3-TR impair
the correct splicing and expression of the splicing
regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found
in cancer cells of different tissue origin and also in
the normal mouse liver, demonstrating a conserved
and fundamental role of SLU7 in the preservation
of genome integrity. Therefore, the dowregulation of
SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the
process of hepatocarcinogenesis