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Abstract 

Persistence of chemoresistant minimal residual disease (MRD) plasma cells 

(PCs) is associated with inferior survival in multiple myeloma (MM). Thus, 

characterization of the minor MRD subclone may represent a unique model to 

understand chemoresistance but to our knowledge, the phenotypic and genetic 

features of the MRD subclone have never been investigated. Here, we compared the 

antigenic profile of MRD vs. diagnostic clonal PCs in 40 elderly MM patients enrolled in 

the GEM2010MAS65 study, and showed that the MRD subclone is enriched in cells 

over-expressing integrins (CD11a/CD11c/CD29/CD49d/CD49e), chemokine receptors 

(CXCR4) and adhesion molecules (CD44/CD54). Genetic profiling of MRD vs. 

diagnostic PCs was performed in twelve patients; three of them showed identical copy 

number alterations (CNAs), in other three cases MRD clonal PCs displayed all genetic 

alterations detected at diagnosis plus additional CNAs that emerged at the MRD stage, 

whereas in the remaining six patients there were both CNAs present at diagnosis that 

were undetectable in MRD clonal PCs, but also a selected number of genetic 

alterations that became apparent only at the MRD stage. The MRD subclone showed 

significant downregulation of genes related to protein processing in endoplasmic 

reticulum, as well as novel deregulated genes such as ALCAM that is prognostically 

relevant in MM and may identify chemoresistant PCs in vitro. Altogether, our results 

suggest that therapy-induced clonal selection could be already present at the MRD 

stage, where chemoresistant PCs show a singular phenotypic signature that may result 

from the persistence of clones with different genetic and gene expression profiles. 

 

Key points: 

• We report for the first time the biologic features of MRD cells in MM and unravel 

that clonal selection is already present at the MRD stage 

• MRD cells show a singular phenotypic signature that may result from persisting 

clones with different genetic and gene expression profiles 
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Introduction 
 In multiple myeloma (MM) as in virtually all hematologic malignancies there is a 

correlation between depth of response and prolonged survival.1 Over the past 20 

years, significantly higher rates of complete response (CR) have been achieved 

contributing to improve MM patients’ outcome.2 However, long-term follow-up studies 

have shown that approximately two thirds of these will not sustain their CR, and 

relapse before they can be considered as achieving “operational cure” (i.e.: more than 

10-years progression-free survival).3 Relapses among MM patients in CR are now 

better understood and predicted with the advent of minimal residual disease (MRD) 

studies, which have shown an intrinsic correlation between the persistence of reduced 

numbers of clonal plasma cells (PCs) after therapy (i.e.: MRD) and inferior survival.4-7 

Thus, MRD represents a very small fraction of all diagnostic tumor cells which are 

chemoresistant, potentially quiescent (not producing M-protein), and able to 

recapitulate the initial tumor burden at relapse.  

 Overall, there are two putative mechanisms by which chemoresistance may 

arise in cancer; i) therapy-induced molecular alterations, and ii) presence of cellular 

heterogeneity within the tumor bulk where several subclones coexist and compete with 

each other in such a way that treatment eradicates the major subclone 

(chemosensitive), but a minor, resistant and initially dormant subclone subsequently 

expands and gives rise to disease relapse.8 In MM, the first mechanism has been 

suggested to explain chemoresistance to proteasome inhibition (e.g.: acquired 

mutations in genes encoding proteasome beta subunits 9 or decreased endoplasmic 

reticulum –ER- stress signaling 10) and immunomodulatory agents (e.g.: decreased 

cereblon expression 11,12, over-expression hyaluronan binding proteins such as CD44 
13), or upregulation of the MEK/ERK pathway.14 In turn, the second mechanism would 

explain the shift in dominance of tumor subclones over time in paired samples from MM 

patients studied at diagnosis vs. relapse.15-17 Of note, chemoresistance may also result 

from the combination of both mechanisms; for example, when less differentiated 

myeloma PC clones down-regulate specific transcriptional factors to overcome 

treatment (e.g.: suppression of Xbp1s to diminish ER front-loading and cytotoxic 

susceptibility to proteasome inhibition).18 Despite all the above, both hypothetical 

mechanisms rely on data generated from the study of clonal PCs at the time of relapse, 

while no biologic studies have been performed in primary chemoresistant clonal PCs 

that persist at MRD levels after frontline therapy before the patients’ relapse. 

 MRD monitoring has become one of the most relevant prognostic factors in MM, 

independently of patients’ serological response and diagnostic cytogenetic profile.5 

Thus, it has been shown that the outcome of patients with standard- or high-risk 
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cytogenetics is modulated by the persistence vs. eradication of MRD 5 but also that, 

particularly among MRD-positive cases, survival is significantly inferior in patients with 

clonal PCs harboring high-risk cytogenetic abnormalities.5 Thus, both the depth of 

response and the genetic profile of chemoresistant subclones most likely play an 

important role in the outcome of MM patients. Thereby, a better understanding of the 

biologic signature of MRD vs. diagnostic cells could potentially contribute to gain insight 

in the mechanisms of chemoresistance at the MRD level, and the potential discovery of 

novel therapeutic targets. 

Here, we have characterized chemoresistant MRD cells from patients included 

in the GEM2010MAS65 clinical trial, by comparing their phenotypic and genetic profiles 

against paired diagnostic clonal PCs. Our results reveal that therapy-induced clonal 

selection is already present at the MRD stage, in which chemoresistant PCs show a 

singular phenotypic signature that may result from the persistence of clones with 

different cytogenetic and gene expression profiles. Furthermore, we show that such 

analyses also provide a novel approach to better understand chemoresistance, through 

the identification of novel candidate genes which could be potentially responsible for 

drug resistance and consequently, impact on patients’ survival. 
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Methods. 
Patients and treatment. A total of 40 elderly, transplant-ineligible patients with newly-

diagnosed symptomatic MM staged according to the International Myeloma Working 

Group criteria 19 were prospectively studied after inclusion in the GEM2010MAS65 trial 

(NCT01237249). In all patients, bone marrow (BM) aspirates were collected at 

diagnosis and after nine cycles of induction therapy. In brief, patients treatment 
consisted of either nine identical induction cycles with bortezomib, melphalan, 

prednisone (VMP; n=21), or alternating cycles of VMP and lenalidomide plus low-dose 

dexamethasone (Rd) for up to nine courses (n=19). Samples were collected after 

informed consent was given by each individual according to the local ethical 

committees and the Helsinki Declaration. 

 
Multidimensional flow cytometry (MFC) immunophenotyping. Approximately 

400μL of EDTA-anticoagulated BM aspirated samples were immunophenotyped using 

four different 8-color combinations of monoclonal antibodies (MoAb) direct 

immunofluorescence stain-and-then-lyse technique: [Pacific Blue (PacB), Pacific 

Orange (PacO), fluorescein isothiocyanate (FITC), phycoerythrin (PE), peridinin 

chlorophyll protein-cyanin 5.5 (PerCP-Cy5.5), PE-cyanin 7 (PE-Cy7), allophycocyanin 

(APC), alexafluor 700 (AF700)]: i) CD29, CD45, CD11a, β7, CD79b, CD49d, CD19, 

CD38; ii) CD11c, CD45, CD41a, CD49e, CD33, CD117, CD19, CD38; iii) CD20, CD45, 

CD81, CD54, CD138, CD56, CD19, CD38, and; iv) HLA-DR, CD45, CD44, CXCR4, 

CD27, CD28, CD19, CD38. Markers were selected based on their role to identify the 

PC compartment (CD38, CD138), discriminate clonal from normal PCs within the PC 

compartment (CD19, CD20, CD27, CD28, CD45, CD56, CD81, CD117), define B-

cell/PC differentiation (CD19, CD20, CD27, CD45, CD79b, CD81, HLADR), to mediate 

cell-to-cell interactions (CD28, CD117), and in cell-adhesion-mediated-drug-resistance 

(CAM-DR: CD11a, CD11c, CD29, CD41a, CD44, CD49d, CD49e, CD54, CXCR4, β7). 

Data acquisition was performed for approximately 106 leukocytes/tube in a 

FACSCantoII flow cytometer (Becton Dickinson Biosciences – BDB – San Jose, CA) 

using the FACSDiva 6.1 software (BDB). Instrument performance was daily monitored 

using the Cytometer Setup Tracking (CST; BDB) and rainbow 8-peak beads 

(Spherotech, Inc; Lake Forest, IL) after laser stabilization, following the EuroFlow 

guidelines 20; sample acquisition was performed only in case of longitudinal instrument 

stability. In Supplementary Figure 1, the expression levels of CD19 in mature B-cells 

from BM samples assessed at diagnosis and after induction are represented, and 

confirm the longitudinal instrument stability. Per protocol, newly-diagnosed MM patients 
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included in the GEM2010MAS65 trial had BM samples studied after 9 induction cycles 

to monitor MRD levels; whenever persistent clonal PCs were detected (MRD-positive), 

exactly the same immunophenotypic method performed at diagnosis was repeated for 

the characterization of the chemoresistant clone after therapy. 

 
Generation of immunophenotypic protein expression profiles (iPEP). To generate 

iPEPs, we used first those five parameters measured in common for each aliquot 

(CD38, CD45, CD19, forward light scatter –FSC- and sideward light scatter –SSC-) to 

define the PC compartment. Then, the iPEP of diagnostic (baseline) and 

chemoresistant (MRD) cells for all 23 phenotypic markers analyzed plus FSC and SSC 

was generated for every single clonal PC, after merging of flow cytometry data files and 

calculation of data.21,22 First, the merge function of the Infinicyt software (Cytognos SL, 

Salamanca, Spain) was used to fuse the different data files corresponding to the 4 

different 8-color MoAb combinations studied per sample, into a single data file 

containing all information measured for that sample. For any single cell in each 8-color 

MoAb combination (aliquot), this included data about those antigens that were 

measured directly on it and antigens which were not evaluated directly (“missing 

values”) for that cell in the corresponding aliquot it was contained in. Then, the 

calculation function of the Infinicyt software was used to fill in the “missing values”, 

based on the “nearest neighbor” statistical principle 23,24, defined by the unique position 

(Euclidean distance)of individual PCs in the multidimensional space created by the five 

common (backbone) parameters (FSC, SSC, CD38, CD45 and CD19). The “nearest 

neighbor” for each individual clonal PC in a sample aliquot was calculated as that 

clonal PC in another aliquot showing the shortest distance to it in the three-dimensional 

space generated by the five parameters measured in common in both aliquots. Then, 

for each individual single clonal PCs in a sample aliquot, those values obtained for 

each of the closest single clonal PC in the other aliquot were assigned for each of 

those parameters not actually measured in the former single clonal PC.25,26 Ultimately, 

an iPEP was generated for every single PC, which included all 23 phenotypic markers 

analyzed plus FSC and SSC. Therapy-induced (phenotypic) clonal selection was 

further investigated by principal component analysis (PCA), based on the 25 

parameters evaluated using the automated population separator (APS; principal 

component 1 vs. principal component 2) graphical representation of the Infinicyt 

software 20, and comparing merged patient-paired iPEP of baseline (diagnostic) vs. 

MRD myeloma PCs. 
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Copy number and gene expression profiling of baseline vs. MRD patient-paired 
myeloma PCs. Per-protocol, clonal PCs from diagnostic samples were isolated from 

BM aspirates using CD138+ immunomagnetic beads (Miltenyi Biotech, Bisley, UK). 

Following induction therapy, BM aspirates were obtained to determine patients’ MRD 

response at cycle 9, and clonal PCs from MRD-positive cases were FACS-sorted 

(FACSAria II, BDB; purity ≥97%) according to patient-specific aberrant phenotypes. 

DNA from matched diagnostic and MRD clonal PCs was available in 8/40 patients, as 

well as in 4 additional cases treated with six induction cycles with VRD, making a total 

of 12 patients. Afterwards, genome-wide detection of copy-number abnormalities 

(CNAs) and loss of heterozygosity (LOH) were investigated using the standard 

Affymetrix Cytoscan 750K platform (Affymetrix, Santa Clara, CA, USA). An unpaired 

analysis was performed using 240 Hapmap files as reference for normal DNA. The 

complete data set was analyzed by visual inspection using the AGCC and ChAS 

software programs (Affymetrix). CNAs were reported when the three following criteria 

were met: ≥25 consecutive imbalanced markers per segment; ≥100Kb minimum 

genomic size and; <50% overlap with paired control DNA and/or genomic variants of 

Toronto DB (DGV).27 Only copy number-neutral loss of heterozygosity (CNN-LOH) 

larger that 5Mb were considered. 

Gene expression profiling (GEP) was performed in matched diagnostic and 

MRD clonal PCs from 7/40 cases with adequate RNA extracted from CD138+ and 

patient-specific phenotypically aberrant FACS-purified tumor cells, respectively. Briefly, 

the integrity of the extracted RNA was assessed using the Agilent 2100 Bioanalyzer. 

Afterward, RNA was amplified, labeled, and subsequently hybridized to the Human 

Gene 1.0 ST Array (Affymetrix).28 Normalization was carried out by using the 

expression console (Affymetrix) with the RMA algorithm which includes background 

correction, normalization and calculation of expression values (log2).29 The SIMFIT 

(http://www.simfit.org.uk/) statistical software was used to perform hierarchical 

clustering analyses based on Euclidean distances and the group average linkage 

method. Differentially expressed genes between classes were identified using the 

Significant Analysis of Microarrays (SAM) algorithm (http://www-stat.standford.edu/-

tibs/SAM), and significant genes were selected based on the lowest q-value 

(<0.05).28,29 We used the WebGestalt online suite 30 to identify the most relevant 

functional pathways involved according to the differentially expressed genes. Full 

microarray data is available at the Gene Expression Omnibus database 

(www.ncbi.nlm.nih.gov/geo/; accession number GSE70399). The potential impact on 

disease survival of selected top-deregulated genes was investigated in a series of 

newly-diagnosed MM patients who had been treated according to the Total Therapy 

http://www.simfit.org.uk/
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(TT) programs 3A (NCT00081939; n=276) and 3B (NCT00572169; n=168) with GEP 

data on CD138+ purified PCs. Optimal gene expression cut-offs were first established 

in patients enrolled in TT3A (training set), and then tested in patients enrolled in TT3B 

(validation set). Complete description of the TT3 program has been reported 

elsewhere.31  

 
In vitro evaluation of ALCAM expression in chemoresistant MM cells. Baseline 

levels of the ALCAM protein (CD166) (BDB) were assessed by flow cytometry on the 

surface of eight MM cell lines (NCI-H929, JJN3, KMS-11, MM1S, OPM2, RPMI-8226, 

U266, and U266-LR7). ALCAM expression was more extensively evaluated in RPMI-

8226 MM cells after co-culture with BM stromal cells (BMSCs) with or without 

simultaneous exposure to bortezomib (5nM), lenalidomide (10µM), dexamethasone 

(1µM) and melphalan (1µM) for 24 and 48 hours at 37°C. Stromal cells were obtained 

as previously described 32, and a confluent monolayer was generated by plating 10x105 

BMSCs in a 12-well plate for 48 hours. ALCAM expression was measured in 

chemoresistant (Annexin-V-) and chemosensitive (Annexin-V+) RPMI-8226 cells after 

exclusion of debris and cell doublets based on their FSC and SSC characteristics, and 

of CD38-CD138- BMSCs. Data acquisition was performed in a FACSCantoII flow 

cytometer (BDB) using the FACSDiva 6.1 software (BDB); for data analysis the Infinicyt 

software (Cytognos) was used. All experiments were performed in triplicate. 

 
Statistical analysis. The Wilcoxon signed rank test was used to evaluate the statistical 

significance of the phenotypic differences observed between baseline and MRD 

myeloma PCs, whereas the Mann-Whitney U and the Kruskal-Wallis tests were used to 

estimate the statistical significance of differences observed between two or more 

groups, respectively. The SPSS software (version 20.0; SPSS Inc., Chicago, IL, USA) 

was used for all statistical tests. 
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Results 
MRD clonal PCs show a singular immunophenotypic protein expression profile 
(iPEP). The iPEP of clonal PCs from patient-paired diagnostic and MRD samples were 

analyzed in 40 patients. Compared to the diagnostic tumor bulk, chemoresistant MRD 

clonal PCs showed significant up-regulation (P <.05) of CD11a, CD11c, CD29, CD44, 

CD49d CD49e, CD54, CD138, CXCR4 and HLADR (Figure 1A). Of note, differences in 

the expression levels of proteins were not due to de novo expression on MRD cells of 

previously undetectable antigens on diagnostic clonal PCs, but rather because the 

MRD clone clustered among those cells that at diagnosis showed the highest levels of 

expression for such markers (Figure 1B); in fact, MRD cells typically clustered in a 

more restricted area of that occupied by the whole BM clonal PC compartment at 

diagnosis (Figure 1B). Interestingly, differences in the ratio between the amount of 

antigen expressed per cell in paired MRD vs. diagnostic BM PCs for the top-5 

deregulated markers were particularly evident in patients receiving only bortezomib, 

melphalan and prednisone (VMP) vs. those receiving alternating cycles of VMP and 

lenalidomide/dexamethasone (Rd) (Table 1); in fact, differential expression of markers 

such as CD81 (P =.06) and CD117 (P =.03) was noted among patients exposed only to 

VMP and not Rd. Altogether, these results suggest that between diagnosis and the 

MRD stage, therapy-induced phenotypic selection of clonal PCs might occur within the 

initial tumor bulk, in which PCs showing stronger expression of integrin and adhesion 

molecules are more prone to survive (Figure 1B). 

 
Copy number profile of patient-paired diagnostic vs. MRD clonal PCs. 
Comparison between iPEP of diagnostic vs. MRD clonal PCs suggested that the latter 

might represent a (phenotypic) subset of the whole diagnostic tumor population. In 

order to gain further insight into this novel hypothesis, we investigated copy number 

alteration (CNA) profiles of matched diagnostic vs. MRD clonal PCs (Figure 2). The 

median number of CNAs in diagnostic and MRD clonal PCs were 11 and 14, 

respectively. Individual patient analyses revealed that in three out of the twelve cases 

analyzed both clones showed identical copy number profiles (#1, #2, and #3), whereas 

in the remaining nine patients there were unique CNAs detected in at least one of the 

two PC populations. Namely, MRD clonal PCs from patients #4, #5, and #6 displayed 

all genetic alterations detected at diagnosis but one interstitial gain in chromosome 3 of 

patient #4, plus 4 and 5 additional CNAs that emerged at the MRD stage in cases #5 

and #6, respectively (Figure 2). In the remaining six patients (#7 - #12) there was 

further variability, with both CNAs present at diagnosis that were undetectable in MRD 

clonal PCs, but also a selected number of genetic alterations that became apparent 
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only at the MRD stage (total of 4, 4, 4, 10, 14 and 17 different CNAs between 

diagnostic vs. MRD clonal PCs in patients #7, #8, #9, #10, #11 and #12, respectively). 

Overall, a total of 66 CNA (56 losses and 10 gains) were uniquely present in only one 

of the two PC populations (26 at diagnosis, and 40 after therapy), in the absence of 

recurrent patterns of genetic evolution from baseline into MRD cells. We also 

investigated the profile of copy number-neutral loss of heterozygosity (CNN-LOH) in 

matched diagnostic and chemoresistant clones. As expected, these abnormalities were 

less frequently observed  and were only noted in 6 out of the 12 cases; in 3 of the latter 

6 (#8, #9 and #12) the MRD clonal PCs lacked CNN-LOH present at diagnosis, 

whereas patient #6 had a CNN-LOH in chromosome 1 which was not detected at 

diagnosis. All remaining cases had overlapping CNN-LOH profiles.  

 
Gene expression profiling of chemoresistant MRD clonal PCs. Upon 

demonstrating that chemoresistant MRD cells are characterized by a singular iPEP and 

they often carry CNAs which were undetectable at diagnosis or only became apparent 

after therapy, we sought to compare the gene expression profiling (GEP) of diagnostic 

vs. MRD clonal PCs in patient-paired (n=7) samples of the GEM2010MAS65 study, to 

determine whether chemoresistant subclones have unique GEP signatures. As a 

result, MRD clonal PCs showed deregulated expression of 1336 genes (317 up- and 

1019 down-regulated) (Figure 3A and Supplementary Excel File 1). Functional analysis 

using all deregulated genes revealed that several of those being down-regulated, were 

related to cellular functions such as protein export, protein processing in the 

endoplasmic reticulum (ER), and N-Glycan biosynthesis (Table 2). In addition to down-

regulation of a large number of ER-related genes, MRD clonal PCs also showed lower 

expression of genes encoding for different proteasome subunits (i.e.: PAAF1, PSMA6, 

PSMB10, POMP, PSME1, PSMD10, PSMB6, PSME3, PSMA2). Afterward, we focused 

on those genes that were maximally upregulated (fold-change ≥2) and downregulated 

(fold-change ≤0.5) in MRD vs. diagnostic clonal PCs, and that had been related to 

chemoresistance/aggressiveness in other neoplasms or related to proteasome-

inhibition and ER stress (n=21 genes), and investigated their potential impact on the 

survival of newly-diagnosed MM patients enrolled in the Total Therapy program 3 (TT3) 

(Table 3). Overall, 9 out of the 21 genes tested showed a significant prognostic impact 

on overall survival (OS) in the training (TT3a) set, but only three of these nine genes 

kept their prognostic significance in the validation (TT3b) MM patient set; thus, inferior 

OS rates were observed in both series for cases showing overexpression of both FLNA 

(median OS of 5-years vs. not reached for patients with high vs. low FLNA expression, 

respectively; P ≤.002) (Supplementary Figure 2A) and FERMT3 (median OS not 
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reached for patients with high vs. low FERMT3 expression, respectively; P =.03) 

(Supplementary Figure 2B), as well as lower expression of ALCAM (median OS not 

reached vs. 6-years for patients with high vs. low ALCAM expression, respectively; P 

≤.02) (Figure 3A). In line with the findings in newly-diagnosed patients enrolled in the 

TT3 program, the MRD clone in the GEM2010MAS65 trial also showed overexpression 

of FERMT3 and FLNA plus downregulation of ALCAM vs. diagnostic PCs. 

Since loss of ALCAM has been linked to more aggressive disease in different 

solid tumors, we further investigated its potential relationship with MM chemoresistance 

in vitro. ALCAM expression was found to be strong positive in the JJN3, KMS-11 and 

MM1S cell lines, dim positive in NCI-H929 and OPM2, and almost absent in the U266 

and U266-LR7 cell lines (Figure 3B). RPMI-8266 MM cells showed heterogeneous 

ALCAM expression with two negative and positive subsets; thereby, we used this later 

cell line to investigate whether after drug exposure, chemoresistant (Annexin-V-ve) MM 

cells would become enriched with the ALCAM-ve subset as compared to 

chemosensitive (Annexin-V+ve) PCs. Interestingly, the relative percentage of ALCAM- 

cells within total RPMI-8226 MM cells was significantly increased (due to selective 

decrease of the ALCAM+ve subset) among chemoresistant vs. chemosensitive PCs co-

cultured with BMSCs and exposed in vitro to the combination of bortezomib, 

lenalidomide, dexamethasone and melphalan for 24/48 hours (median of 57% vs. 27%, 

respectively; P =.003) (Figure 3D). In fact, the increment in ALCAM-ve cells was more 

pronounced when RPMI-8266 were exposed to all drugs administered simultaneously 

as compared to each drug individually (Supplementary Figure 3). Moreover, there was 

a trend towards progressively increased numbers of ALCAM-ve MM cells within 

chemoresistant (Annexin-V-ve) RPMI-8266 cells at baseline, after co-culture with 

BMSCs, and after exposure to chemotherapy (medians of 41%, 50% and 57%, 

respectively; P =.09) (Figures 3E and 3F). A similar pattern was noted upon comparing 

ALCAM expression in the chemoresistant KMS11/BTZ, U266-LR7 and MM1R cell lines 

vs. their chemosensitive counterparts (KMS11, U266 and MM1S) at baseline and upon 

co-culture with BMSCs (Supplementary Figure 4). 
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Discussion 
Understanding MM genomic and molecular heterogeneity is required to develop 

treatment strategies that could target dominant but also subclonal reservoirs of 

chemoresistant cells. While clonal heterogeneity at diagnosis and clonal tiding from 

diagnosis to patients’ relapse has been recently described 15-17,21,33, no attention has 

been paid to primary chemoresistant PCs that persist even among patients in 

serological response (i.e.: MRD). Since persistence of MRD is strongly linked to an 

inferior survival 4-7, a better understanding of MRD clonal PCs is warranted to 

potentially overcome their chemoresistant phenotype. Here, we report for the first time 

the biologic features of MRD cells in MM. Overall, our results revealed that 

chemoresistant clones are enriched in cells with a distinct phenotypic signature, but 

also that there is frequent tiding of genetically different subclones. Ultimately, MRD 

PCs have a deregulated GEP which allows them to survive after multidrug 

chemotherapy. 

In MM, disease recurrence after initial (complete) response to treatment has 

been typically hypothesized to be associated with more immature progenitor cells that 

escape conventional anti-myeloma therapy.18,34-36 Interestingly, while early studies 

suggested that persistent CD19+CD138- clonotypic B-cells represented the MM cancer 

stem cell compartment and were responsible for disease relapse 34-36, more recent data 

indicates that CD138+ PCs have a complex architecture linked to interconvertible 

phenotypic and functional compartments with different chemoresistant potential.18,21,37 

In particular, it has been suggested that mature CD138+ PCs give rise to more 

immature CD138lo pre-PCs/plasmablasts that secrete lower immunoglobulin levels 

(and are thereby less susceptible to ER stress) 18 and could be specifically involved in 

disease dissemination.37 In line with this hypothesis, we have recently shown that MM 

circulating tumor cells represent a singular phenotypic and functional subset of MM 

tumor cells characterized by lower CD138 expression 22,38 Here, we used new analytic 

tools developed by the EuroFlow Consortium 20 to simultaneously evaluate the pattern 

of expression of 23 markers at the single-cell level and longitudinally compare the 

iPEPs from diagnostic vs. MRD clonal PCs. In contrast to the above mentioned 

hypothesis, our results demonstrate that MM cells with stronger capacity to survive 

frontline chemotherapy were those with the highest expression of CD138; because 

MRD clonal PCs are responsible for the disease relapse, these results point out the 

clonogenic potential of mature CD138+ PCs. Furthermore, MRD subclones showed 

enhanced expression of several integrins (e.g.: CD11a, CD11c, CD29, CD49d, 

CD49e), chemokine receptors (e.g.: CXCR4) and adhesion molecules (e.g.: CD44 and 

CD54), CD28 (a pro-survival mediator through PC-dendritic cell interaction 39) and 
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HLADR. The expression of these class of markers has been shown to be intrinsically 

related to different PC chemoresistant potential in vitro and in vivo 40-45, as well as to 

patients’ survival 46-48, which would be potentially due to a stronger attachment of MRD 

clonal PCs to the BM stroma, which provides higher protection from chemotherapy-

induced apoptosis.49,50 In fact, it could be hypothesized that a subset of chemoresistant 

MRD cells strongly attached to the stroma might be potentially underestimated in BM 

aspirates. By contrast, a different role has been assigned to CD44 in cell-adhesion 

mediated drug resistance (CAM-DR) in several cancers including MM, where CD44 

may partially contribute to dexamethasone resistance 51 and becomes upregulated in 

lenalidomide-resistant MM cells to stabilize the expression of P-glycoprotein, a multi-

drug resistance efflux pump responsible for the cellular uptake of lenalidomide.13,52 

Interestingly, differences between diagnostic vs. MRD cells were more pronounced 

among patients treated only with VMP vs. cases exposed to VMP and Rd. Altogether, 

these findings suggest that from a phenotypic standpoint, chemoresistant PCs 

represent a uniquely defined subclone of all diagnostic tumor cells, but also that the 

more drugs being simultaneously used the higher the chances to debulk all different 

phenotypic tumor subclones. Further studies are warranted to confirm if the enhanced 

expression of integrins in MRD clonal PCs is biologically meaningful; in vitro, we noted 

that chemoresistant myeloma cell lines slightly increase their expression of CD11c, 

CD29, CD44, and CD49d and CD49e upon short-term (24h) co-culture with BMSCs 

(Supplementary Figure 5). 

Longitudinal comparison between the genomic profiles of PCs studied at 

diagnosis and during patients’ relapse has revealed three models of clonal dynamics: 

genetic stability over time, acquired CNAs at relapse, or heterogeneous fluctuation of 

different genetic clones from earlier to later time-points.16,53 Here, we show that such 

genetic instability is already detectable at the MRD level, with three out of twelve cases 

analyzed showing identical copy number profiles whereas in the remaining patients 

there was a median of 4 different CNAs between diagnostic vs. MRD clonal PCs. 

However, it is unlikely that all the differences observed were acquired upon treatment 

exposure; instead, it is most likely that a significant number of such CNAs are present 

at subclonal levels, but because the methodology used in the present study can only 

detect abnormalities that are present in 20% or more of clonal PCs cells 17, they may 

have gone undetected (Supplementary Figures 6 and 7). Altogether, these findings are 

of high relevance since they illustrate that small subclones carrying unique cytogenetic 

abnormalities may become the predominant population after chemotherapy, and 

according to the specific type of genetic alteration acquired or lost, influence patients’ 

prognosis. Longitudinal analyses between diagnostic vs MRD vs relapse patient-paired 
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samples are now warranted to understand if the clonal distribution of PCs at MRD 

mimics that of relapse, or if additional changes are observed between both time-points. 

Accordingly, our observations suggest that monitoring of MM patients should become 

more comprehensive, not only gathering information on MRD levels to determine the 

depth of response, but also combining it with the cytogenetic characterization of MRD 

cells to better understand their malignant potential and identify potential therapeutic 

targets.21 In this regard, we have also hypothesized that understanding the molecular 

signature of MRD cells could contribute to the discovery of novel genes/pathways 

which are responsible for drug resistance in individual patients. Thus, comparison of 

the GEP of patient-paired diagnostic vs. MRD cells revealed over 1.000 deregulated 

genes, several of which are related to protein export, protein processing, and N-Glycan 

biosynthesis. These findings are consistent with those reported by Leung-Hagesteijn et 

al 18, who showed that PCs with lower protein production have lower ER protein-load 

rendering them less vulnerable to lethal ER stress induced by proteasome inhibitors. In 

vitro studies have also reported similar observations in which attenuation of the 

eukaryotic initiation factor (eIF)-2α phosphorylation and ER stress were required for 

MM cells to survive proteasome inhibition 10,54-56; accordingly, MRD clonal PCs showed 

significant down-regulation of different eIF-related genes (Supplementary Excel File 1). 

One potential caveat of the present study is the sole focus on clonal and mature PCs, 

since the MRD compartment may also reside among CD138- cells that are expected to 

have lower expression of ER-genes.18 However, our experience on the comparison of 

MRD levels determined by MFC (that focus on the CD138+ PC compartment) vs. 

molecular methods (that measure clonotypic VDJ rearrangements in whole BM 

samples), shows a highly significant correlation between the number of MRD cells 

detected by both techniques.4,6 Accordingly, if CD138- MRD “stem cells” exist, they 

would be present at levels <10-6 and therefore, virtually impossible to identify and study 

using current technology. 

The transcriptomic characterization of chemoresistant tumor cells might 

represent a different strategy to identify novel molecular pathways potentially related to 

patients’ outcome. Accordingly, mRNA expression levels in newly-diagnosed MM 

patients of three of the top-deregulated genes in MRD clonal PCs (FERMT3, FLAN and 

ALCAM) were of significant prognostic value, suggesting that patients with a PC 

compartment that at diagnosis was potentially enriched in chemoresistant cells have 

inferior overall survival. Noteworthy, such genes have been previously linked to more 

aggressive phenotypes in solid tumors but not in MM. In line with the singular iPEP of 

MRD clonal PCs potentially favoring their attachment to the BM stroma, FERMT3 and 

FLNA have been assigned a role in integrin activation and cell migration, respectively. 
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Similarly, ALCAM has been implicated in cell migration and invasion in melanoma as 

well as several other tumors including those of the prostate, esophagus, colon, bladder, 

pancreas and lung.57 Interestingly, in an in vitro model where MM cells co-cultured with 

BMSCs were exposed to the same drugs as the MRD clone from patients enrolled in 

the GEM2010MAS65 trial, a progressive accumulation of ALCAM-ve cells among 

chemoresistant cells was observed. Thus, the understanding of the molecular signature 

of MRD cells along with the investigation of whether these cells were detectable before 

treatment (intrinsic resistant cells) or not (acquired resistant cells) will hopefully provide 

novel insight into the field of chemoresistance in MM; that notwithstanding, such 

knowledge is most likely treatment-dependent, since different molecular pathways will 

potentially emerge from the study of MRD cells after different treatment strategies. 

Thus, the results of the GEP comparison between patient-paired diagnostic vs. 

chemoresistant MRD clonal PCs, herein performed in a limited number of cases, 

should be interpreted as hypothesis generating rather than conclusive. This also 

applies for ALCAM, and further studies in larger series of patients are warranted to 

confirm this hypothesis. 

In summary, by characterizing patient-paired diagnostic vs. MRD clonal PCs we 

unravel that therapy-induced clonal selection is already present at the MRD stage, in 

which chemoresistant myeloma PCs show a specific phenotypic signature that may 

result from the persistence of subclones with different cytogenetic and gene expression 

profiles. Characterization of the MRD clone may represent a unique model for a better 

understanding of chemoresistance and the characteristics of the cellular source of 

relapses after response to front-line therapy, and ultimately design therapeutic 

strategies to overcome resistance already at the MRD stage. 
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Table 1. iPEP of diagnostic vs. MRD BM (clonal) PCs in MM patients (n=40) 
studied after induction therapy (9 cycles of VMP vs. 9 alternating cycles of VMP and 

RD): the fold-change in the ratio between the amount of protein per PC (MFI) for paired 

MRD / diagnostic BM clonal PCs is shown for the top-5 markers over-expressed on 

MRD cells in the overall patient series, and the two different patient treatment groups. 

All markers were evaluated in all 40 patients at both time-points (diagnosis vs. MRD). 

 

Overall series 

(n=40) 

Sequential chemotherapy 

(n=21) 

Alternating chemotherapy 

(n=19) 

Markers Fold-
change P -value Fold- 

change P -value Fold- 
change P -value 

CD29 1.95 <.001 1.95 <.001 2.02 .009 

CD54 1.92 <.001 2.98 <.001 1.31 .04 

CD138 1.90 .04 2.16 .03 1.22 .36 

CD44 1.79 <.001 2.04 <.001 1.50 .008 

CD49e 1.58 <.001 1.97 .002 1.49 .084 

MFI: mean fluorescence intensity; PCs: plasma cells; VMP: bortezomib, melphalan, prednisone; 
Rd: lenalidomide, dexamethasone; CR: complete response; VGPR: very good partial response; 
PR: partial response 
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Table 2. Selected pathways and transcription targets predicted to be significantly inhibited according to the corresponding deregulated genes in 
patient-paired diagnostic vs, minimal residual disease (MRD) clonal plasma cells (PCs). 

  P -value Genes down- or up- regulated in MRD clonal PCs 

Pathways 
 

Protein export 1.50e-05 SRPRB, SRP72, SEC61A1, SEC61G, SRP68, SPCS1, SEC11C, SPCS2, SPCS3, 
SEC63  

Protein processing in 
endoplasmic 
reticulum 

1.50e-05 
ERLEC1, SEC61G, MAN1A2, DNAJB11, SSR2, UGGT1, SEC63, EDEM2, CANX, 
SEC23B, OS9, SSR1, DERL1, SAR1B, RPN1, SEC61A1, STT3A, DERL2, DAD1, 
UBE2J1, SEL1L, EIF2S1, SSR3, LMAN2, UBE2G1, LMAN1, PDIA6  

N-Glycan 
biosynthesis 0.0004 MAN2A2, RPN1, ALG5, DPM1, STT3A, ALG14, ALG13, MAN1A2, DAD1, ALG8, 

DOLK, ALG1  
    

Transcription 
targets ELK1 1.91e-06 

ZNF35, TOMM20, YIPF5, PYROXD1, TRAF7, F11R, POMP, SND1, TMEM167A, 
HCCS, BECN1, MTMR2, UBLCP1, C14orf119, PHF5A, UBA2, DNAAF2, ATXN10, 
ACVR2A, RNF2, DNMT1, DDX1, RNF185, U2AF2, SLC39A9, RWDD2A, DPM1, UXT, 
TLK1, SDF2, TMEM59, GTF2A2, JAGN1, UBR4, NECAP2, AMZ2, TMCO1, WAS, 
DSCR3, TBCC, SEC61A1, C21orf59, ZBTB41, GMIP, E2F4, PEX2, POLR2H, 
MAD2L1BP, C11orf57, YEATS2, NXT2, CCDC25, UNC13D, MKI67IP, NDUFS1, 
PIGW, ZCCHC9, MUT, C17orf80, PHB2, ITFG1, UFC1, CBLL1, SDHAF2, UGGT1, 
HNRNPH1, SLC35A5, EIF1AD, GRPEL2, CEP164, ERH, LSM5, SHKBP1, VMP1, 
TMEM62, FTSJD1, COX6A1, BANF1, RPL27, FBXO38, MEA1, CKS1B, HARS2, 
LMAN2, MORN2, MRPL40, TOMM70A, ZNF184, MAP4K2, RHOA, PGS1, CALU, 
ZSCAN12, UFM1, TRMT112, TGDS, FANCF, RNF13, THUMPD3, COX17, ZFP3, 
RPL32, PALB2, MRPL33, LYL1, COX8A, EIF2S1, PITPNA, TXNDC12, PSME3, 
MRPL3  
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Table 3. Deregulated genes in patient-paired minimal residual disease (MRD) vs. 
diagnostic clonal plasma cells (PCs) and their prognostic value according to mRNA 
expression levels in PCs from newly-diagnosed patients treated according to Total 
Therapy (TT) programs 3A (training set) and 3B (validation set). 

Genes 

Expression in 
MRD vs. 

diagnostic 
clonal PCs 

Expression 
in TT3 

patients 

TT3A (training set) TT3B (validation set) 

Median 
(years) P -value Median 

(years) P -value 

Cancer related        

FERMT3 (↑) > 9.8 NR .03 NR .03 ≤ 9.8 NR NR 

TSPO (↑) > 11.55 7y .06 3y .0002 ≤ 11.55 NR NR 

ALOX5 (↑) > 12.39 NR .07 NR .11 ≤ 12.39 NR NR 

NCF4 (↑) > 10.58 NR .09 7y .2 ≤ 10.58 NR NR 

FLNA (↑) > 10.56 7y .0002 6y .003 ≤ 10.56 NR NR 

PREX1 (↑) > 5.33 NR .02 NR .79 ≤ 5.33 7y NR 

PYCARD (↑) > 9.37 9y .001 NR .35 ≤ 9.37 NR NR 

MYO1G (↑) > 4.66 NR .01 NR .09 ≤ 4.66 7y NR 

SERPINI1 (↓) > 9.85 NR .11 NR .47 ≤ 9.85 NR NR 

DUSP11 (↓) > 11.04 NR .06 NR .86 ≤ 11.04 NR NR 

ALCAM (↓) > 10.29 NR .0002 NR .02 ≤ 10.29 5y 6y 

CCNC (↓) > 11.71 NR .07 NR .67 ≤ 11.71 9y NR 

COPZ1 (↓) > 11.29 NR .38 NR .71 ≤ 11.29 NR NR 

FZD3 (↓) > 9.20 NR .01 NR .18 ≤ 9.20 9y NR 

E2F5 (↓) > 9.92 9y .10 NR .88 ≤ 9.92 NR NR 

ER related        

PDIA5 (↓) > 11.76 NR .17 NR .10 
≤ 11.76 9y NR  

EMC7 (↓) > 13.72 9y .11 7y .77 ≤ 13.72 NR NR 

PI related        

PSMD10 (↓) > 10.68 9y .003 NR .25 ≤ 10.68 NR NR 

SMILE/TMTC3 (↓) > 4.0 NR .08 NR .06 ≤ 4.0 9y 6y 

PSME3 (↓) > 8.69 NR .03 NR .33 ≤ 8.69 NR NR 

PSMB6  > 12.42 9y .11 NR .07 (↓) ≤ 12.42 NR NR 

CAV1 (↓) > 12.46 7y .11 NR .43 ≤ 12.46 NR NR 
NR: not reached 
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Figure legends. 

Figure 1. (A) Immunophenotypic protein expression profiles (iPEP) of MRD vs. 
diagnostic MM clonal PCs (n=40). Detailed immunophenotypic features of paired 

diagnostic versus minimal residual disease (MRD) clonal plasma cells (PCs) from 40 

multiple myeloma (MM) patients. All markers were evaluated in all 40 cases at both 

time-points (diagnosis vs. MRD).Notched boxes represent the 25th and 75th percentile 

values of the ratio between the amount of antigen MFI expression per paired MRD / 

diagnostic BM clonal PCs; the line in the middle and vertical lines correspond to the 

median value and both the 10th and 90th percentiles, respectively. (B) Representative 

bivariate dot-plots for the top 5 over-expressed markers in MRD versus diagnostic BM 

clonal PCs are shown (CD29, CD54, CD138, CD44, CD49e), as well as  the 

corresponding immunophenotypic protein expression profiles (iPEP) for each of the five 

representative patients. The iPEP of diagnostic BM clonal PCs is represented by one 

and two standard deviation lines, whereas their paired individual MRD cells are 

represented by black dots. Each patient-specific iPEP is represented using the 

automated population separator (APS1) plot based on a graphical representation of 

principal component 1 (x-axis) vs. principal component 2 (y-axis) for a total of 25 

parameters. 

 
Figure 2. Clonal evolution from diagnosis to MRD clonal PCs. (A) Overview of 

copy number alterations (CNAs) and (B) copy number neutral loss of heterozygosity 

(CNN-LOH) detected in clonal plasma cells (PCs) from matched bone marrow samples 

from 12 patients at diagnosis and during MRD monitoring. In Panel A, copy number 

profile of patient-paired diagnostic and MRD clonal PCs for each patient are stacked, 

with the diagnostic sample shown on the top (green) and the MRD sample in the 

bottom (brown). Sample pairs are indicated on the y-axis and chromosome location on 

the x-axis. Blue shading indicates the presence of copy number loss, red indicates 

copy number gain. In panel B, CNN-LOH detected in diagnostic (in salmon) and MRD 

(blue) clonal PCs are represented by pink bars. 

 
Figure 3. Gene expression profiles of MRD vs diagnostic MM clonal PCs. (A) Heat 

map of genes with differential expression (FDR q-value <0.05) between patient-paired 

diagnostic vs. MRD clonal PCs. (B) Overall survival according to low vs. high (≤10.29 

vs. >10.29 normalized mRNA expression) ALCAM levels determined in CD138+ve 

purified plasma cells (PCs) from newly-diagnosed multiple myeloma (MM) patients 

treated according to the Total Therapy (TT) program 3A (n=276; training set) and 3B 

(n=168; validation set). (C) ALCAM (CD166) protein surface expression in a panel of 
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MM cell lines is show using the total density graphic representation of the Infinicyt 

software. (D) Overall ALCAM (CD166) protein surface expression in chemoresistant 

(Annexin-V-ve) and apoptotic (Annexin-V+ve) RPMI-8226 cells; the percentage of 

ALCAM-ve and ALCAM+ve MM cells is represented by the black and grey bars, 

respectively (E) Percentage of ALCAM-ve cells within total chemoresistant (Annexin-V-

ve) RPMI-8226 cells at baseline, upon co-culture with bone marrow stromal cells 

(BMSCs), and in co-culture with BMSCs after 24h and 48h exposure to bortezomib, 

lenalidomide, dexamethasone and melphalan. All experiments were performed in 

triplicate. (F) Representative experiment (n=1) of ALCAM (CD166) protein surface 

expression in chemoresistant (Annexin-V-ve) RPMI-8226 cells.  


