5,811 research outputs found

    Instabilities for a relativistic electron beam interacting with a laser irradiated plasma

    Full text link
    The effects of a radiation field (RF) on the unstable modes developed in relativistic electron beam--plasma interaction are investigated assuming that ω0>ωp\omega_{0} >\omega_{p}, where ω0\omega_{0} is the frequency of the RF and ωp\omega_{p} is the plasma frequency. These unstable modes are parametrically coupled to each other due to the RF and are a mix between two--stream and parametric instabilities. The dispersion equations are derived by the linearization of the kinetic equations for a beam--plasma system as well as the Maxwell equations. In order to highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. Assuming that the drift velocity ub\mathbf{u}_{b} of the beam is parallel to the wave vector k\mathbf{k} of the excitations two particular transversal and parallel configurations of the polarization vector E0\mathbf{E}_{0} of the RF with respect to k\mathbf{k} are considered in detail. It is shown that in both geometries resonant and nonresonant couplings between different modes are possible. The largest growth rates are expected at the transversal configuration when E0\mathbf{E}_{0} is perpendicular to k\mathbf{k}. In this case it is demonstrated that in general the spectrum of the unstable modes in ω\omega --kk plane is split into two distinct domains with long and short wavelengths, where the unstable modes are mainly sensitive to the beam or the RF parameters, respectively. In parallel configuration, E0∥k\mathbf{E}_{0} \parallel \mathbf{k}, and at short wavelengths the growth rates of the unstable modes are sensitive to both beam and RF parameters remaining insensitive to the RF at long wavelengths.Comment: 23 pages, 5 figure

    General analysis of the rare Bc->D^*_s l^+ l^- decay beyond the standard model

    Full text link
    The general analysis of the rare Bc->D^*_s l^+ l^- decay is presented by using the most general, model independent effective Hamiltonian. The dependencies of the branching ratios, longitudinal, normal and transversal polarization asymmetries for l^- and the combined asymmetries for l^- and l^+ on the new Wilson coefficients are investigated. Our analysis shows that the lepton polarization asymmetries are very sensitive to the scalar and tensor type interactions, which will be very useful in looking for new physics beyond the standard model.Comment: 27 Pages, 14 Figure

    New physics effects to the lepton polarizations in the B -> K l^+ l^- decay

    Get PDF
    Using the general, model independent form of the effective Hamiltonian, the general expressions of the longitudinal, normal and transversal polarization asymmetries for (l^-) and (l^+) and combinations of them for the exclusive (B -> K l^+ l^-) decay are found. The sensitivity of lepton polarizations and their combinations on new Wilson coefficients are studied. It is found that there exist regions of Wilson coefficients for which the branching ratio coincides with the Standard Model result while the lepton polarizations differ substantially from the standard model prediction. Hence, studying lepton polarization in these regions of new Wilson coefficients can serve as a promising tool for establishing new physics beyond the Standard Model.Comment: 18 pp, 14 figures (postscript formatted), LaTex formatte

    Temperature dependent dynamic and static magnetic response in magnetic tunnel junctions with Permalloy layers

    Full text link
    Ferromagnetic resonance and static magnetic properties of CoFe/Al2O3/CoFe/Py and CoFe/Al2O3/CoFeB/Py magnetic tunnel junctions and of 25nm thick single-layer Permalloy(Py) films have been studied as a function of temperature down to 2K. The temperature dependence of the ferromagnetic resonance excited in the Py layers in magnetic tunnel junctions shows knee-like enhancement of the resonance frequency accompanied by an anomaly in the magnetization near 60K. We attribute the anomalous static and dynamic magnetic response at low temperatures to interface stress induced magnetic reorientation transition at the Py interface which could be influenced by dipolar soft-hard layer coupling through the Al2O3 barrier

    Low frequency noise due to magnetic inhomogeneities in submicron FeCoB/MgO/FeCoB magnetic tunnel junctions

    Full text link
    We report on room temperature low frequency noise due to magnetic inhomogeneities/domain walls (MI/DWs) in elliptic submicron FeCoB/MgO/FeCoB magnetic tunnel junctions with an area between 0.0245 and 0.0675{\mu}m2. In the smaller area junctions we found an unexpected random telegraph noise (RTN1), deeply in the parallel state, possibly due to stray field induced MI/DWs in the hard layer. The second noise source (RTN2) is observed in the antiparallel state for the largest junctions. Strong asymmetry of RTN2 and of related resistance steps with current indicate spin torque acting on the MI/DWs in the soft layer at current densities below 5x10^5 A/cm2.Comment: 12 pages, 4 figure

    Lepton polarization correlations in B→K∗τ−τ+B \to K^* \tau^- \tau^+

    Get PDF
    In this work we will study the polarizations of both leptons (τ\tau) in the decay channel B→K∗τ−τ+B\to K^* \tau^- \tau^+. In the case of the dileptonic inclusive decay B→K∗ℓ−ℓ+B\to K^* \ell^- \ell^+, where apart from the polarization asymmetries of single lepton ℓ\ell, one can also observe the polarization asymmetries of both leptons simultaneously. If this sort of measurement is possible then we can have, apart from decay rate, FB asymmetry and the six single lepton polarization asymmetries (three each for ℓ−\ell^- and ℓ+\ell^+), nine more double polarization asymmetries. This will give us a very useful tool in more strict testing of SM and the physics beyond. We discuss the double polarization asymmetries of τ\tau leptons in the decay mode B→K∗τ−τ+B\to K^* \tau^- \tau^+ within the SM and the Minimal Supersymmetric extensions of it.Comment: 21 pages, 21 figures; version to match paper to appear in PR

    Sparsity of integer solutions in the average case

    Get PDF
    We examine how sparse feasible solutions of integer programs are, on average. Average case here means that we fix the constraint matrix and vary the right-hand side vectors. For a problem in standard form with m equations, there exist LP feasible solutions with at most m many nonzero entries. We show that under relatively mild assumptions, integer programs in standard form have feasible solutions with O(m) many nonzero entries, on average. Our proof uses ideas from the theory of groups, lattices, and Ehrhart polynomials. From our main theorem we obtain the best known upper bounds on the integer Carathéodory number provided that the determinants in the data are small

    From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model

    Full text link
    The magnetic properties of the two-channel periodic Anderson model for uranium ions, comprised of a quadrupolar and a magnetic doublet are investigated through the crossover from the mixed-valent to the stable moment regime using dynamical mean field theory. In the mixed-valent regime ferromagnetism is found for low carrier concentration on a hyper-cubic lattice. The Kondo regime is governed by band magnetism with small effective moments and an ordering vector \q close to the perfect nesting vector. In the stable moment regime nearest neighbour anti-ferromagnetism dominates for less than half band filling and a spin density wave transition for larger than half filling. TmT_m is governed by the renormalized RKKY energy scale \mu_{eff}^2 ^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure

    Investigation of heavy-heavy pseudoscalar mesons in thermal QCD Sum Rules

    Get PDF
    We investigate the mass and decay constant of the heavy-heavy pseudoscalar, BcB_c, ηc\eta_c and ηb\eta_b mesons in the framework of finite temperature QCD sum rules. The annihilation and scattering parts of spectral density are calculated in the lowest order of perturbation theory. Taking into account the additional operators arising at finite temperature, the nonperturbative corrections are also evaluated. The masses and decay constants remain unchanged under T≅100 MeVT\cong 100 ~MeV, but after this point, they start to diminish with increasing the temperature. At critical or deconfinement temperature, the decay constants reach approximately to 35% of their values in the vacuum, while the masses are decreased about 7%, 12% and 2% for BcB_c, ηc\eta_c and ηb\eta_b states, respectively. The results at zero temperature are in a good consistency with the existing experimental values as well as predictions of the other nonperturbative approaches.Comment: 11 Pages, 2 Tables and 6 Figure
    • …
    corecore