281 research outputs found

    Interlayer coherent composite Fermi liquid phase in quantum Hall bilayers

    Get PDF
    Composite fermions have played a seminal role in understanding the quantum Hall effect, particularly the formation of a compressible `composite Fermi liquid' (CFL) at filling factor nu = 1/2. Here we suggest that in multi-layer systems interlayer Coulomb repulsion can similarly generate `metallic' behavior of composite fermions between layers, even if the electrons remain insulating. Specifically, we propose that a quantum Hall bilayer with nu = 1/2 per layer at intermediate layer separation may host such an interlayer coherent CFL, driven by exciton condensation of composite fermions. This phase has a number of remarkable properties: the presence of `bonding' and `antibonding' composite Fermi seas, compressible behavior with respect to symmetric currents, and fractional quantum Hall behavior in the counterflow channel. Quantum oscillations associated with the Fermi seas give rise to a new series of incompressible states at fillings nu = p/[2(p \pm 1)] per layer (p an integer), which is a bilayer analogue of the Jain sequence.Comment: 4 pages, 3 figure

    Parafermionic edge zero modes in Z_n-invariant spin chains

    Full text link
    A sign of topological order in a gapped one-dimensional quantum chain is the existence of edge zero modes. These occur in the Z_2-invariant Ising/Majorana chain, where they can be understood using free-fermion techniques. Here I discuss their presence in spin chains with Z_n symmetry, and prove that for appropriate coupling they are exact, even in this strongly interacting system. These modes are naturally expressed in terms of parafermions, generalizations of fermions to the Z_n case. I show that parafermionic edge zero modes do not occur in the usual ferromagnetic and antiferromagnetic cases, but rather only when the interactions are chiral, so that spatial-parity and time-reversal symmetries are broken.Comment: 22 pages. v2: small changes, added reference

    Phase diagram of bismuth in the extreme quantum limit

    Full text link
    Elemental bismuth provides a rare opportunity to explore the fate of a three-dimensional gas of highly mobile electrons confined to their lowest Landau level. Coulomb interaction, neglected in the band picture, is expected to become significant in this extreme quantum limit with poorly understood consequences. Here, we present a study of the angular-dependent Nernst effect in bismuth, which establishes the existence of ultraquantum field scales on top of its complex single-particle spectrum. Each time a Landau level crosses the Fermi level, the Nernst response sharply peaks. All such peaks are resolved by the experiment and their complex angular-dependence is in very good agreement with the theory. Beyond the quantum limit, we resolve additional Nernst peaks signaling a cascade of additional Landau sub-levels caused by electron interaction

    Non-Abelian toplogical superconductors from topological semimetals and related systems under superconducting proximity effect

    Full text link
    Non-Abelian toplogical superconductors are characterized by the existence of {zero-energy} Majorana fermions bound in the quantized vortices. This is a consequence of the nontrivial bulk topology characterized by an {\em odd} Chern number. It is found that in topological semimetals with a single two-bands crossing point all the gapped superconductors are non-Abelian ones. Such a property is generalized to related but more generic systems which will be useful in the search of non-Abelian superconductors and Majorana fermions

    Topological orbital ladders

    Full text link
    We unveil a topological phase of interacting fermions on a two-leg ladder of unequal parity orbitals, derived from the experimentally realized double-well lattices by dimension reduction. Z2Z_2 topological invariant originates simply from the staggered phases of spsp-orbital quantum tunneling, requiring none of the previously known mechanisms such as spin-orbit coupling or artificial gauge field. Another unique feature is that upon crossing over to two dimensions with coupled ladders, the edge modes from each ladder form a parity-protected flat band at zero energy, opening the route to strongly correlated states controlled by interactions. Experimental signatures are found in density correlations and phase transitions to trivial band and Mott insulators.Comment: 12 pages, 5 figures, Revised title, abstract, and the discussion on Majorana numbe

    Non-Abelian statistics and topological quantum information processing in 1D wire networks

    Get PDF
    Topological quantum computation provides an elegant way around decoherence, as one encodes quantum information in a non-local fashion that the environment finds difficult to corrupt. Here we establish that one of the key operations---braiding of non-Abelian anyons---can be implemented in one-dimensional semiconductor wire networks. Previous work [Lutchyn et al., arXiv:1002.4033 and Oreg et al., arXiv:1003.1145] provided a recipe for driving semiconducting wires into a topological phase supporting long-sought particles known as Majorana fermions that can store topologically protected quantum information. Majorana fermions in this setting can be transported, created, and fused by applying locally tunable gates to the wire. More importantly, we show that networks of such wires allow braiding of Majorana fermions and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental setups that enable the Majorana fusion rules to be probed, along with networks that allow for efficient exchange of arbitrary numbers of Majorana fermions. This work paves a new path forward in topological quantum computation that benefits from physical transparency and experimental realism.Comment: 6 pages + 17 pages of Supp. Mat.; 10 figures. Supp. Mat. has doubled in size to establish results more rigorously; many other improvements as wel

    Targeted Disruption of the Interaction between WD-40 Repeat Protein 5 (WDR5) and Mixed Lineage Leukemia (MLL)/SET1 Family Proteins Specifically Inhibits MLL1 and SETd1A Methyltransferase Complexes

    Get PDF
    MLL1 belongs to the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, composed of MLL1–4 and SETd1A/B. MLL1 translocations are present in acute leukemias, and mutations in several family members are associated with cancer and developmental disorders. MLL1 associates with a subcomplex containing WDR5, RbBP5, ASH2L, and DPY-30 (WRAD), forming the MLL1 core complex required for H3K4 mono- and dimethylation and transcriptional activation. Core complex assembly requires interaction of WDR5 with the MLL1 Win (WDR5 interaction) motif, which is conserved across the SET1 family. Agents that mimic the SET1 family Win motif inhibit the MLL1 core complex and have become an attractive approach for targeting MLL1 in cancers. Like MLL1, other SET1 family members interact with WRAD, but the roles of the Win motif in complex assembly and enzymatic activity remain unexplored. Here, we show that the Win motif is necessary for interaction of WDR5 with all members of the human SET1 family. Mutation of the Win motif-WDR5 interface severely disrupts assembly and activity of MLL1 and SETd1A complexes but only modestly disrupts MLL2/4 and SETd1B complexes without significantly altering enzymatic activity in vitro. Notably, in the absence of WDR5, MLL3 interacts with RAD and shows enhanced activity. To further probe the role of the Win motif-WDR5 interaction, we designed a peptidomimetic that binds WDR5 (Kd ∼3 nm) and selectively inhibits activity of MLL1 and SETd1A core complexes within the SET1 family. Our results reveal that SET1 family complexes with the weakest Win motif-WDR5 interaction are more susceptible to Win motif-based inhibitors

    Coulomb-assisted braiding of Majorana fermions in a Josephson junction array

    Get PDF
    We show how to exchange (braid) Majorana fermions in a network of superconducting nanowires by control over Coulomb interactions rather than tunneling. Even though Majorana fermions are charge-neutral quasiparticles (equal to their own antiparticle), they have an effective long-range interaction through the even-odd electron number dependence of the superconducting ground state. The flux through a split Josephson junction controls this interaction via the ratio of Josephson and charging energies, with exponential sensitivity. By switching the interaction on and off in neighboring segments of a Josephson junction array, the non-Abelian braiding statistics can be realized without the need to control tunnel couplings by gate electrodes. This is a solution to the problem how to operate on topological qubits when gate voltages are screened by the superconductor

    Topologically non-trivial superconductivity in spin-orbit coupled systems: Bulk phases and quantum phase transitions

    Get PDF
    Topologically non-trivial superconductivity has been predicted to occur in superconductors with a sizable spin-orbit coupling in the presence of an external Zeeman splitting. Two such systems have been proposed: (a) s-wave superconductor pair potential is proximity induced on a semiconductor, and (b) pair potential naturally arises from an intrinsic s-wave pairing interaction. As is now well known, such systems in the form of a 2D film or 1D nano-wires in a wire-network can be used for topological quantum computation. When the external Zeeman splitting Γ\Gamma crosses a critical value Γc\Gamma_c, the system passes from a regular superconducting phase to a non-Abelian topological superconducting phase. In both cases (a) and (b) we consider in this paper the pair potential Δ\Delta is strictly s-wave in both the ordinary and the topological superconducting phases, which are separated by a topological quantum critical point at Γc=Δ2+μ2\Gamma_c = \sqrt{\Delta^2 + \mu^2}, where μ(>>Δ)\mu (>> \Delta) is the chemical potential. On the other hand, since Γc>>Δ\Gamma_c >> \Delta, the Zeeman splitting required for the topological phase (Γ>Γc\Gamma > \Gamma_c) far exceeds the value (Γ∼Δ\Gamma \sim \Delta) above which an s-wave pair potential is expected to vanish (and the system to become non-superconducting) in the absence of spin-orbit coupling. We are thus led to a situation that the topological superconducting phase appears to set in a parameter regime at which the system actually is non-superconducting in the absence of spin-orbit coupling. In this paper we address the question of how a pure s-wave pair potential can survive a strong Zeeman field to give rise to a topological superconducting phase. We show that the spin-orbit coupling is the crucial parameter for the quantum transition into and the robustness of the topologically non-trivial superconducting phase realized for Γ>>Δ\Gamma >> \Delta.Comment: as published in the focus issue on Topological Quantum Computation, New J. Phys. 13 (2011

    Identification of Thioaptamer Ligand against E-Selectin: Potential Application for Inflamed Vasculature Targeting

    Get PDF
    Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA) against E-selectin (ESTA-1) by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (KD = 47 nM) while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition) of sLex positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1) that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery
    • …
    corecore