994 research outputs found

    Characterization of exoplanetary systems with the direct imaging technique: towards the first results of SPHERE at the Very Large Telescope

    Get PDF
    In the year of the 20th anniversary of the discovery of the first extrasolar planet we can count more than 1800 companions found with different techniques. The majority of them are indirect methods that infer the presence of an orbiting body by observing the parent star (radial velocity, transits, astrometry). In this work we explore the technique that permits to directly observe planets and retrieve their spectra, under the conditions that they are bright and far enough from their host star. Direct imaging is a new technique became possible thanks to a new generation of extreme adaptive optics instruments mounted on 8m class telescopes. On the Very Large Telescope two instruments dedicated to the research for exoplanets with direct imaging are now operative: NACO and SPHERE. This thesis will describe the development and results of SPHERE from its predecessor NACO to its integration in laboratory and the final on sky results. Chapter 1 gives a presentation of the exoplanet research, the formation mechanisms, and the characterization of planet atmospheres. Chapter 2 gives a general frame of the two instruments used for the results presented in this thesis: NACO and SPHERE. In Chapter 3 I describe an example of a false positive in the direct imaging technique, found during the survey NACO-Large Program. This work have been published in Zurlo et al. 2013. In Chapter 4 I present the performance of SPHERE, in particular of the subsystems IRDIS and IFS, deeply tested in the laboratory before the shipping to Paranal. This work has been published in Zurlo et al. 2014. Chapter 5 presents a work done to find special targets for the NIRSUR survey, these object are radial velocity long period planets which are observable with SPHERE. In Chapter 6 I present one of the first on sky result, the observations and analysis of the multi-planetary system HR\,8799. In Chapter 7 I give the conclusions and future prospects

    The ALMA Early Science View of FUor/EXor objects. IV. Misaligned Outflows in the Complex Star-forming Environment of V1647 Ori and McNeil's Nebula

    Full text link
    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the star-forming environment surrounding V1647 Ori, an outbursting FUor/EXor pre-MS star. Dust continuum and the (J = 2 - 1) 12^{12}CO, 13^{13}CO, C18^{18}O molecular emission lines were observed to characterize the V1647 Ori circumstellar disc and any large scale molecular features present. We detect continuum emission from the circumstellar disc and determine a radius r = 40 au, inclination i = 17∘^{\circ}−9+6^{+6}_{-9} and total disc mass of Mdisk_{\mathrm{disk}} of ~0.1 M⊙_{\odot}. We do not identify any disc structures associated with nearby companions, massive planets or fragmentation. The molecular cloud environment surrounding V1647 Ori is both structured and complex. We confirm the presence of an excavated cavity north of V1647 Ori and have identified dense material at the base of the optical reflection nebula (McNeil's Nebula) that is actively shaping its surrounding environment. Two distinct outflows have been detected with dynamical ages of ~11,700 and 17,200 years. These outflows are misaligned suggesting disc precession over ~5500 years as a result of anisotropic accretion events is responsible. The collimated outflows exhibit velocities of ~2 km s−1^{-1}, similar in velocity to that of other FUor objects presented in this series but significantly slower than previous observations and model predictions. The V1647 Ori system is seemingly connected by an "arm" of material to a large unresolved structure located ~20"" to the west. The complex environment surrounding V1647 Ori suggests it is in the early stages of star formation which may relate to its classification as both an FUor and EXor type object.Comment: 18 pages, 14 figures, 4 tables; accepted for publication in MNRA

    The ALMA Early Science View of FUor/EXor Objects - V. Continuum Disc Masses and Sizes

    Full text link
    Low-mass stars build a significant fraction of their total mass during short outbursts of enhanced accretion known as FUor and EXor outbursts. FUor objects are characterized by a sudden brightening of ∼5 mag at visible wavelengths within 1 yr and remain bright for decades. EXor objects have lower amplitude outbursts on shorter time-scales. Here we discuss a 1.3 mm Atacama Large Millimeter/submillimeter Array (ALMA) mini-survey of eight outbursting sources (three FUors, four EXors, and the borderline object V1647 Ori) in the Orion Molecular Cloud. While previous papers in this series discuss the remarkable molecular outflows observed in the three FUor objects and V1647 Ori, here we focus on the continuum data and the differences and similarities between the FUor and EXor populations. We find that FUor discs are significantly more massive (∼80–600 MJup) than the EXor objects (∼0.5–40 MJup). We also report that the EXor sources lack the prominent outflows seen in the FUor population. Even though our sample is small, the large differences in disc masses and outflow activity suggest that the two types of objects represent different evolutionary stages. The FUor sources seem to be rather compact (Rc \u3c 20–40 au) and to have a smaller characteristic radius for a given disc mass when compared to T Tauri stars. V1118 Ori, the only known close binary system in our sample, is shown to host a disc around each one of the stellar components. The disc around HBC 494 is asymmetric, hinting at a structure in the outer disc or the presence of a second disc

    Detection of Sharp Symmetric Features in the Circumbinary Disk Around AK Sco

    Full text link
    The Search for Planets Orbiting Two Stars (SPOTS) survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ~13--40 AU range. The sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.Comment: 10 pages, 3 figures, accepted for publication in ApJ Letters. Minor (proof-level) corrections implemented in this versio

    Near-IR observations of the young star [BHB2007]-1: A sub-stellar companion opening the gap in the disk

    Full text link
    The presence of planets or sub-stellar objects still embedded in their native protoplanetary disks is indirectly suggested by disk sub-structures like gaps, cavities, and spirals. However, these companions are rarely detected. We present VLT/NACO high-contrast images in JJ, HH, KSK_S, and L′L^{\prime} band of the young star [BHB2007]-1 probing the inclined disk in scattered light and revealing the probable presence of a companion. The point source is detected in the L′L^{\prime} band in spatial correspondence with complementary VLA observations. This object is constrained to have a mass in the range of 37-47 MJup_{Jup} and is located at 50 au from the central star, inside the 70 au-large disk cavity recently imaged by ALMA, that is absent from our NACO data (down to 20 au). This mass range is compatible with the upper end derived from the size of the ALMA cavity. The NIR disk brightness is highly asymmetric around the minor axis, with the southern side 5.5 times brighter than the northern side. The constant amount of asymmetry across all wavelengths suggests that it is due to a shadow cast by a misaligned inner disk. The massive companion that we detect could, in principle, explain the possible disk misalignment, as well as the different cavity sizes inferred by the NACO and ALMA observations. The confirmation and characterization of the companion is entrusted to future observations.Comment: 9 pages, 5 figures, 3 tables. Accepted for publication on Ap

    Radio-continuum decrements associated to shadowing from the central warp in transition disc DoAr44

    Full text link
    Warps have often been used to explain disc properties, but well characterised examples are important due to their role in disc evolution. Scattered light images of discs with central gaps have revealed sharp warps, such that the outer rings are shadowed by tilted inner discs. The near-IR intensity drops along the ring around TTauri star DoAr44 have been interpreted in terms of a central warp. We report new ALMA observations of DoAr44 in the continuum at 230 GHz and 350 GHz (at ~10 au), along with a new epoch of SPHERE/IRDIS differential polarised imaging taken during excellent weather conditions. The ALMA observations resolve the ring and confirm the decrements proposed from deconvolution of coarse 336 GHz data. The scattered light image constrains the dips, which correspond to a misaligned inner disc with a relative inclination ξ\xi = 21.4 −8.3+6.7^{+6.7}_{-8.3} deg. The SPHERE intensity profile shows a morphological change compared to a previous epoch that may be interpreted as a variable orientation of the inner disc, from ξ\xi ~30 deg to ξ\xi ~20 deg. The intensity dips probably correspond to temperature decrements, as their mm-spectral index, α350GHz230GHz\alpha^{230 GHz}_{350 GHz} ~2.0 ±\pm 0.1, is indicative of optically thick emission. The azimuth of the two temperature decrements are leading clockwise relative to the IR-dips, by η\eta = 14.95 deg and η\eta = 7.92 deg. For a retrograde disc, such shifts are expected from a thermal lag and imply gas surface densities of Σg\Sigma_g = 117 ±\pm 10 g/cm2^2 and Σg\Sigma_g = 48 ±\pm 10 g/cm2^2. A lopsided disc, with contrast ratio frf_r=2.4 ±\pm 0.5, is also consistent with the large continuum crescent.Comment: accepted in MNRA
    • …
    corecore