14 research outputs found

    DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans

    Get PDF
    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has ?, ? and ? subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory ? subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ?75% of total ? subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 ? subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK ? subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved

    Microsatellite markers: what they mean and why they are so useful

    Full text link

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke <it>Schistosoma mansoni </it>and the model planarian <it>Schmidtea mediterranea </it>paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.</p> <p>Results</p> <p>Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 <it>S. mansoni </it>GPCRs, representing all of the major families; 105 <it>Rhodopsin</it>, 2 <it>Glutamate</it>, 3 <it>Adhesion</it>, 2 <it>Secretin </it>and 5 <it>Frizzled</it>. Similarly, 418 <it>Rhodopsin</it>, 9 <it>Glutamate</it>, 21 <it>Adhesion</it>, 1 <it>Secretin </it>and 11 <it>Frizzled S. mediterranea </it>receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific <it>Rhodopsin </it>subfamily, a planarian-specific <it>Adhesion</it>-like family, and atypical <it>Glutamate</it>-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length <it>Rhodopsin </it>GPCRs, complementing phylogenetic and homology-based classification.</p> <p>Conclusions</p> <p>Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.</p

    Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers

    No full text
    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20 % increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40 %), increases in protein storage in the hemolymph (150–300 %), and extensions in lifespan (13–21 %). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction
    corecore