33 research outputs found

    Molecular determinant deciphering of MIC-guided RND efflux substrates in E. coli

    Get PDF
    Antimicrobial resistance poses an urgent and formidable global public health threat. The escalation of bacterial multidrug resistance to antibiotics has the potential to become a leading cause of global mortality if there is no substantial improvement in antimicrobial development and therapy protocols. In light of this, it is imperative to identify the molecular determinants responsible for the reduced antibiotic activity associated with RND efflux pumps. This comprehensive study meticulously examines Minimum Inhibitory Concentration (MIC) data obtained from in vitro tests for various antibiotic families and non-active dye compounds, sourced from diverse literature references. The primary focus of this study is to assess the susceptibility of these agents to efflux-resistant Escherichia coli strains, integrating both MIC data and relevant physicochemical properties. The central objective is to unveil the specific substituents that significantly influence the uptake process mediated by the AcrAB-TolC efflux system. This exploration seeks to reveal the consequences of these substituents on pharmacodynamic responses, providing valuable insights into Structure-Activity Relationships. It is noteworthy that this analysis represents a pioneering effort, with prospective implications for RND efflux pump-producing strains. Ultimately, deciphering efflux markers is crucial to effectively mitigate the emergence of specific resistance and to better monitor the role of this primary resistance mechanism in Gram-negative bacteria, particularly as observed in clinical antibiotic therapy practice

    Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria

    Get PDF
    In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7–23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14–16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7–23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal “dual action” for β-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro

    Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy

    No full text
    International audienceAfter several decades of continuously successful antibiotic therapy against bacterial infections, we are now facing a worrying prospect: the accelerated evolution of antibiotic resistance to important human pathogens and the scarcity of new anti-infective drug families under development. Efflux is a general mechanism responsible for bacterial resistance to antibiotics. This active drug transport is involved in low intrinsic susceptibility, cross-resistance to chemically unrelated classes of molecules, and selec-tion/acquisition of additional mechanisms of resistance. Thus, inhibition of bacterial efflux mechanisms appears to be a promising target in order to (i) increase the intracellular concentration of antibiotics that are expelled by efflux pumps, (ii) restore the drug susceptibility of resistant clinical strains, and (iii) reduce the capability for acquired additional resistance. Structurally unrelated classes of efflux pump inhibitors (EPIs) have been described and tested in the last decade, including some analogues of antibiotic substrates and new chemical molecules. Among the current collection of EPIs, only a few compounds have been studied taking into account the structure– activity relationships and the spectrum of activity in terms of antibiotics, pumps and bacteria. While large efforts have characterized an increasing number of bacterial efflux pumps and generated several potentially active EPIs, they have not elucidated the molecular basis of efflux transport and inhibition. Recent studies of pump – substrate complexes, the 3D resolution of the efflux pumps, the synthesis of novel compounds and molecular dynamic studies may generate new clues to decipher and select novel targets inside the efflux mechanisms and, finally, may result in a clinically useful molecule

    Intracellular stiffening competes with cortical softening in glioblastoma cells

    No full text
    Posté le 2 septembre 2020 sur BioRxivCancer cell softening increases with the progression of the disease, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. We use two microrheology techniques, a single cell parallel plates rheometer to probe whole cell mechanics and optical-tweezers to probe intracellular rheology. We show that cell mechanics discriminates human glioma cells of different grades. When probed globally, grade IV glioblastoma cells are softer than grade III astrocytoma cells, while they are surprisingly stiffer at the intracellular level. We explain this difference between global and local intracellular behaviours by changes in the composition and spatial organization of the cytoskeleton and by changes in nuclear mechanics. Our study highlights the need to combine rheology techniques for potential diagnostic or prognostic methods based on cancer cell mechanophenotyping

    Amine-alkyl derivatives of hydantoin: New tool to combat resistant bacteria

    No full text
    International audienceA series of new 5,5-diphenylhydantoin derivatives with various amineealkyl terminal fragments at N1-position were synthesized. Then a series of twenty-eight compounds with the same hydantoin scaffold were evaluated for their potency to combat bacterial MultiDrug Resistance (MDR). Intrinsic antibacterial activities were first evaluated. As these compounds showed no direct activity on bacteria, their influence on minimal inhibitory concentration (MIC) of nalidixic acid was tested in two strains of Enterobacter aerogenes: the reference-strain ATCC-13048 and the CM-64 strain which over-produces AcrAB-TolC efflux pump. The compounds showed moderate-or low-anti-MDR properties. According to SAR-studies, hit compounds containing 2-methoxyphenylpiperazine at N1-terminal fragment and methylcarboxyl acid one at N3-position of hydantoin have been identified for further microbiological studies and pharma-comodulations to develop efflux pump inhibitors

    Multiscale rheology of glioma cells

    No full text
    International audienceCells tend to soften during cancer progression, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. Using two microrheology techniques, a single cell parallel plates rheometer to probe whole cell mechanics and optical-tweezers to probe intracellular rheology, we show that cell mechanics discriminates human glioma cells of different grades. When probed globally, grade IV glioblastoma cells are softer than grade III astrocytoma cells, while they are surprisingly stiffer at the intracellular level. We explain this difference between global and local intracellular behaviours by changes in the composition and spatial organization of the cytoskeleton, and by changes in nuclear mechanics. Our study highlights the need to combine rheology techniques for potential diagnostic or prognostic methods based on cancer cell mechanophenotyping

    Multiscale rheology of glioma cells

    No full text
    International audienceCells tend to soften during cancer progression, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. Using two microrheology techniques, a single cell parallel plates rheometer to probe whole cell mechanics and optical-tweezers to probe intracellular rheology, we show that cell mechanics discriminates human glioma cells of different grades. When probed globally, grade IV glioblastoma cells are softer than grade III astrocytoma cells, while they are surprisingly stiffer at the intracellular level. We explain this difference between global and local intracellular behaviours by changes in the composition and spatial organization of the cytoskeleton, and by changes in nuclear mechanics. Our study highlights the need to combine rheology techniques for potential diagnostic or prognostic methods based on cancer cell mechanophenotyping
    corecore