10 research outputs found
Two-step detection of water sound events for the diagnostic and monitoring of dementia
International audienceA significant aging of world population is foreseen for the next decades. Thus, developing technologies to empower the independency and assist the elderly are becoming of great interest. In this framework, the IMMED project investigates tele-monitoring technologies to support doctors in the diagnostic and follow-up of dementia illnesses such as Alzheimer. Specifically, water sounds are very useful to track and identify abnormal behaviors form everyday activities (e.g. hygiene, household, cooking, etc.). In this work, we propose a double-stage system to detect this type of sound events. In the first stage, the audio stream is segmented with a simple but effective algorithm based on the Spectral Cover feature. The second stage improves the system precision by classifing the segmented streams into water/non-water sound events using Gammatone Cepstral Coefficients and Support Vector Machines. Experimental results reveal the potential of the combined system, yielding a F-measure higher than 80%
3D Indoor Building Environment Reconstruction using Polynomial Kernel, Least Square Adjustment, Interval Analysis and Homotopy Continuation
Abstract. Nowadays, municipalities intend to have 3D city models for facility management, disaster management and architectural planning. Indoor models can be reconstructed from construction plans but sometimes, they are not available or very often, they differ from ‘as-built’ plans. In this case, the buildings and their rooms must be surveyed. One of the most utilized methods of indoor surveying is laser scanning. The laser scanning method allows taking accurate and detailed measurements. However, Terrestrial Laser Scanner is costly and time consuming. In this paper, several techniques for indoor 3D building data acquisition have been investigated. For reducing the time and cost of indoor building data acquisition process, the Trimble LaserAce 1000 range finder is used. The proposed approache use relatively cheap equipment: a light Laser Rangefinder which appear to be feasible, but it needs to be tested to see if the observation accuracy is sufficient for the 3D building modelling. The accuracy of the rangefinder is evaluated and a simple spatial model is reconstructed from real data. This technique is rapid (it requires a shorter time as compared to others), but the results show inconsistencies in horizontal angles for short distances in indoor environments. The range finder horizontal angle sensor was calibrated using a least square adjustment algorithm, a polynomial kernel, interval analysis and homotopy continuation.
</jats:p
Identification of decreased intrinsic capacity: Performance of diagnostic measures of the ICOPE Screening tool in community dwelling older people in the VIMCI study.
peer reviewed[en] BACKGROUND: The World Health Organization (WHO) has developed the Integrated Care for Older People (ICOPE) strategy to face the challenges of ageing societies. This strategy is focused on person centered care and the assessment intrinsic capacity (IC). Early identification of five domains of IC (cognition, locomotion, vitality, sensory (hearing and vision), and psychological) has been shown to be related with adverse outcomes and can guide actions towards primary prevention and healthy ageing. IC assessment proposed by the WHO ICOPE guidelines is composed by two steps: First, Screening for decreased IC by the ICOPE Screening tool; second, by the reference standard methods. The aim was to assess the performance of diagnostic measures (sensibility, specificity, diagnostic accuracy, and agreement of the ICOPE Screening tool) compared to the reference standard methods in European community-dwelling older adults.
METHODS: Cross-sectional analysis of the baseline of the ongoing VIMCI (Validity of an Instrument to Measure Intrinsic Capacity) cohort study, which was carried out in Primary Care centers and outpatient clinics from 5 rural and urban territories in Catalonia (Spain). Participants were 207community dwelling persons ≥ 70-year-old with Barthel ≥ 90, without dementia or advanced chronic conditions who provided their consent to participate. The 5 IC domains were assessed by the ICOPE Screening tool and the reference methods (SPPB, gait speed, MNA, Snellen chart, audiometry, MMSE, GDS5) during patients' visit. Agreement was assessed with the Gwet AC1 index.
RESULTS: ICOPE Screening tool sensitivity was higher for cognition (0.889) and ranged between 0.438 and 0.569 for most domains. Specificity ranged from 0.682 to 0.96, diagnostic accuracy from 0.627 to 0.879, Youden index from 0.12 to 0.619, and Gwet AC1 from 0.275 to 0.842.
CONCLUSION: The ICOPE screening tool showed fair performance of diagnostic measures; it was helpful to identify those participants with satisfactory IC and showed a modest ability to identify decreased IC in older people with high degree of autonomy. Since low sensitivities were found, a process of external validation would be recommended to reach better discrimination. Further studies about the ICOPE Screening tool and its performance of diagnostic measures in different populations are urgently required
Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases
Altres ajuts: Generalitat de Catalunya, Departament de Salut; Generalitat de Catalunya, Departament d'Empresa i Coneixement i CERCA Program; Ministerio de Ciencia e Innovación; Instituto Nacional de Bioinformática; ELIXIR Implementation Studies (CNAG-CRG); Centro de Investigaciones Biomédicas en Red de Enfermedades Raras; Centro de Excelencia Severo Ochoa; European Regional Development Fund (FEDER).Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%)
3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2 D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, they extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested for single object, nearest neighbor and range search queries using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its clustering in 2 D.</p
SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study
Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling.
Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty.
Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year.
Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population