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ABSTRACT: 

 

Nowadays, municipalities intend to have 3D city models for facility management, disaster 

management and architectural planning. Indoor models can be reconstructed from construction 

plans but sometimes, they are not available or very often, they differ from ‘as-built’ plans. In this 

case, the buildings and their rooms must be surveyed. One of the most utilized methods of indoor 

surveying is laser scanning. The laser scanning method allows taking accurate and detailed 

measurements. However, Terrestrial Laser Scanner is costly and time consuming. In this paper, 

several techniques for indoor 3D building data acquisition have been investigated. For reducing the 

time and cost of indoor building data acquisition process, the Trimble LaserAce 1000 range finder 

is used. The proposed approache use relatively cheap equipment: a light Laser Rangefinder which 

appear to be feasible, but it needs to be tested to see if the observation accuracy is sufficient for the 

3D building modelling. The accuracy of the rangefinder is evaluated and a simple spatial model is 

reconstructed from real data. This technique is rapid (it requires a shorter time as compared to 

others), but the results show inconsistencies in horizontal angles for short distances in indoor 

environments. The range finder horizontal angle sensor was calibrated using a least square 

adjustment algorithm, a polynomial kernel, interval analysis and homotopy continuation. 

 

1. INTRODUCTION 

In 3D GIS, 3D spatial modelling is one of the most important aspects (Chen at al., 2008). 3D spatial 

modelling involves the definition of spatial objects and spatial data models for visualization, 

interoperability and standards (Chen at al., 2008). Due to the complexity of the real world, 3D 

spatial modelling leads towards different approaches in different GIS applications. According to 

Chen et al. (2008), there is not a universal 3D spatial model that can be used in and shared between 

different applications. Different disciplines according to their input and output use different spatial 

data models. 
 

The automatic reconstruction of urban 3D models has been a research area of photogrammetry for 

the past two decades (Haala and Kada, 2010). According to Habib et al. (2010), digital 3D 

modelling of complex buildings has been a challenge until now with photogrammetry technology. 
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This leads towards semi-automated construction of complex 3D building models. Difficulties of 

interpretation of photogrammetric images for 3D city modelling, especially for complex buildings, 

motivated increasing demands for 3D point cloud technologies such as LiDAR (light detection and 

ranging), which can facilitate automated 3D building models. 

 

According to Surmann et al. (2003), rapid characterization and quantification of complex 

environments with increasing demands has created a challenge for 3D data analysis. This crucial 

demand comes from different fields such as industrial automation, architecture, agriculture, 

construction and mine and tunnel maintenance. Precise 3D data is needed for facility management, 

factory design and regional and urban planning. Considering all the issues affecting fully automated 

construction of complex 3D building models, 3D indoor modelling is another aspect in the field of 

3D city modelling which can make the current situation more complex. According to Deak et al. 

(2012), indoor location determination has become a crucial aspect in many different applications 

but unfortunately, a lack of standard is one of the challenges and there are more challenges 

encountered in this field. According to Donath and Thurow (2007), considering many fields of 

applications for building surveying and resulting different demands, representation of the building 

geometry is the most crucial aspect of a building survey. Due to the complexity of indoor 

environment, this field needs to be more researched. 

 

Recently, there has been more interest for 3D building modeling based on LiDAR data, but 

extracting buildings from huge LiDAR datasets is difficult and time consuming and requires 

experienced technicians. Laser scanning technology started in the 1990s (Amato et al., 2003) and it 

can measure a 3D object surface with a high speed pulse. This technology is considered as a tool for 

remote and rapid data collection and it can be used in many different applications from urban and 

regional planning to architecture. A scanner can directly measure distance and reflection intensity of 

3D object surfaces and automatically store collected data in a spatial database. Recent TLS 

technology can collect more than 500,000 points in a second with an accuracy of ±6 mm (Dongzhen 

et al., 2009). 

 

Currently, a growing interest for indoor building surveying has been observed in GIS and BIM 

research communities (Isikdag and Underwood, 2010). The first community is interested in 

modelling existing building structures for emergency response and disaster management systems. 

Indoor building surveying is vital especially when other data sources such as research plans and 

architecture models are not available. The second community is interested in models with ‘as-built’ 

conditions – construction plans are often different from the final constructed building and it is rare 

that appropriate plans are available to the builders. In this case, the buildings and their rooms must 

be surveyed to obtain the locations of walls, edges, corners and their relationship with adjacent 

spaces (i.e. rooms, corridors). Unfortunately, many methods used for land surveying cannot be 

easily applied due to lack of GPS signal from satellites in indoor building environment, limited 

working area inside buildings especially in office space and very detailed environment with 

furniture and installations. There are four approaches that seem to be suitable for indoor surveying 

including: 

  

1. Laser scanning which is expensive, time consuming and requires considerable modelling effort in 

order to fit sections of the surveyed point clouds to basic features such as walls. This results in 
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extensive post-data collection manual work and there is no easy way to integrate individual scan 

results with the model of a complete complex building. 
 

2. Traditional surveying with Total Station or equivalent is also possible, but conversion of captured 

data points into a building model is very complex. 

 

3. Third approach, using a light rangefinder which integrates azimuth (from a digital compass) and 

inclination appears to be the most feasible for surveying indoor building environment, although it 

has a lower level of accuracy than Total Station and Laser Scanner based surveying approaches 

(Jamali et al.,2015). 

 

4. A fourth approach based on photogrammetry technique, uses non-calibrated, non-metric cameras 

to extract 3D information from photographs. For indoor surveying, it is as simple as taking pictures. 

Additionally, images can be used for texture extraction – textures can be attached to walls, floors, 

and ceilings in the model which would increase the realism of visualization. 
 

In this research, we provide a comparative analysis of 3D reconstruction and indoor survey of a 

building done using the Leica scanstation C10 and the Trimble LaserAce 1000 rangefinder (see 

Figure 1). The Trimble LaserAce 1000 has been used for outdoor mapping and measurements, such 

as forestry measurement and GIS mapping (Jamali et al., 2013). A rangefinder can be considered as 

a basic mobile Total Station with limited functionality and low accuracy. The Trimble LaserAce 

1000 is a three-dimensional laser rangefinder with point and shoot workflow. This rangefinder 

includes a pulsed laser distance meter and a compass, which can measure distance, horizontal angle 

and vertical angle up to 150 meter without a target and up to 600 meter with a reflective foil target. 

In this research, we propose this device for indoor mapping and try to validate this technique in an 

indoor environment. Trimble LaserAce 1000 will decrease time and cost of surveying process ( 

Jamali et al. 2014). 

 

a) b)  

Figure 1: Surveying devices: a) Leica scanstation C10 b) Trimble LaserAce 1000 

 

Following this introduction, in Section 2, the requirements of indoor building surveying are 

discussed. In Section 3, the range finder is calibrated using a least square adjustment algorithm. In 

Section 4, the range finder is calibrated using a polynomial kernel algorithm. In Section 5, the range 

finder is calibrated using interval analysis and homotopy continuation in order to control the 

uncertainty of the calibration and of the reconstruction of the building. Section 6 presents 

conclusions and future research. 

2. REQUIREMENTS OF AN INDOOR BUILDING SURVEYING METHOD 

In this research, the surveyor according to his experience and knowledge defined several 

requirements for indoor building surveying as follows: 

i. Number of control points and their positions 



4 
 

To get better results with less shape deformation (e.g. intersection and gap between two rooms due 

to low accuracy of Trimble LaserAce 1000), for each door, there should be a control point inside 

the corridor. For example, if a room has two doors, there should be two control points in the 

corridor to access that certain room by its two doors (see Figure 2). 

 
Figure 2: Position of control points by Trimble LaserAce 1000 

To avoid narrow and wide angle propagation which will lead to shape deformation, Trimble 

LaserAce 1000 needs to be stationed in the center of each room. In reality, there will be some 

furniture in rooms which avoids putting Trimble LaserAce 1000 in the center of a room. Thus, for a 

fully furnished room, there should be at least two control points. 

ii. Number of repetitions of measurements 

Based on the surveyor’s skills, for a certain distance and angle measurement, there should be at 

least three observations. Trimble LaserAce 1000 shows inconsistency in horizontal angle in an 

indoor building environment. By increasing number of repetitions for a measurement, the 

probability of a mistake or blunder occurring will be decreased. In this paper, we use least squares 

adjustment and polynomial kernel as statistical methods and interval analysis and homotopy 

continuation as mathematical methods to calibrate our low accuracy surveying equipment in an 

indoor building environment. Thus, a higher number of measurements will led to a more accurate 

average using least square adjustment and more accurate measurement intervals using interval 

analysis and homotopy continuation. 

iii. Time 

Time is one of the most important factors in this research. The cost of a surveying project will be 

decreased by reducing the time of data collection. There should be a balance between the number of 

repetitions and the time to collect data of a room. The time for collecting data of a room with three 

repetitions (horizontal angle, vertical distance, horizontal distance and vertical distance) and one 

control point using Trimble LaserAce 1000 is between 5 to 10 minutes based on our experiments. 

As can be seen in Figure 3, Trimble LaserAce 1000 is handy and easy to use, which can decrease 

the time of data collection. Based on the surveyor experience, Rangefinder is 2 times quicker 

compared to a traditional Total Station (e.g. Leica 307 TCR) and 10 times quicker compared to a 

terrestrial laser scanner (e.g. Leica Scan Station C10). 



5 
 

 

Figure 3: Time of data collection and 3D building modeling 

iv. Cost 

The cost of the rangefinder is very low compared to the other devices (laser scanner and Total 

Station) used in this research (See Figure 4). 

 

Figure 4: Equipment comparison based on the cost. 

 

v. Data storage 

Data storage for a floor collected by Trimble LaserAce 1000 with twelve rooms and one corridor is 

around 10 Kilo Bytes (KB) in Object model (.obj) data format, 14 KB in Geogebra data format 

without control points and 38 KB with control points. Data collected by Leica scanstation C10 

occupies 4.18 Giga Bytes (GB). Data collected using Leica scanstation C10 contains unnecessary 

details such as furniture and installations. Data storage, rendering and modeling need to be 

considered as important factors in most of applications. Navigation through a building (Yuan and 

Schneider 2010; Li and Lee 2010; Goetz and Zipf 2011) is possible by nodes and lines (paths or 

edges) and 3D building models allow a better understanding of the real world environment. 

 

3. RANGEFINDER CALIBRATION 

 

Coordinates measured by rangefinder are not as precise as laser scanner or total station 

measurements. As seen in Figures 5 and 6, results of Trimble LaserAce 1000 shows deformation of 

building geometry. 
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Figure 5: Floor plan by Trimble LaserAce 1000 

 
Figure 6: 3D building modelling of room 9 by Trimble LaserAce 1000 where dash lines represent 

measured data from Trimble LaserAce 1000 and solid lines represent extruded floor plan. 

 

 
Figure 7: point cloud data collected by Leica scanstation C10. 

 

Figure 7 shows a 3D point cloud collected by Leica scanstation C10. 
 

According to device specifications, the accuracies of the Leica scanstation C10, Trimble LaserAce 

1000 are as shown in Table 1. 

 

Table 1: Accuracies according to product specifications. 

 

Surveying 

Equipment 

Distance 

Accuracy 

Horizontal Angle 

Accuracy 

Vertical Angle Accuracy 

Leica scanstation 

C10 

±4 mm 12” 12” 

Trimble 

LaserAce 1000 

±100 mm 7200” 720” 
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The Least-Squares problem is defined as 𝑚𝑖𝑛
𝑥

‖𝐴𝑥 − 𝑦‖2
2where𝐴 ∈ 𝑅𝑚×𝑛,𝑦 ∈ 𝑅𝑚. The pair (A,y) is 

called the problem data. The vector y is called the measurement vector, and the matrix A the design 

or input matrix. The vector 𝑟 ∶= 𝑦 − 𝐴𝑥 is called as the residual error vector. The input matrix A is 

written as𝐴 = [𝑎1 ⋯ 𝑎𝑛], where𝑎𝑗 ∈ 𝑅𝑚 is the 𝑗𝑡ℎ column of A, j=1, …, n. 

The problem is to compute the x that minimizes the sum of the squares of the residuals 

𝑚𝑖𝑛
𝑥

‖∑ 𝑥𝑗𝑎𝑗 − 𝑦𝑛
𝑗=1 ‖

2

2
. 

We are trying to find the best approximation of y in terms of a linear combination of the columns of 

A. Thus, the least square problem amounts to project (find the minimum Euclidean distance) the 

vector y on the span of the vectors𝑎𝑗 's (that is to say the range of A). The 3D building measured by 

the Trimble LaserAce 1000 can be calibrated and reconstructed from the Leica scanstation C10 

based on the least square adjustment algorithm, in the form of absolute orientation. Least square 

adjustment is a well-known algorithm in surveying engineering which is used widely by engineers 

to get the best solution in the sense of the minimization of the sum of the squares of the residuals, 

which is obtained as in the following normal equations, which express that the total differential of 

the sum of squares of residuals is zero. Least square adjustment for a linear system is shown in 

Equation (1). 

X = (A
T 

WA)
-1

A
T 

W L 
X= N

-1 
A

T 
W L                                      (1) 

 

Where L = observations 

X = unknowns  

A = coefficient of unknowns 

W=observation’s weight 

N = (A
T 

W A) 
 

Considering two points, Pa= (XA, YA, ZA) from the Leica C10 and Pc= (XC, YC, ZC) from the 

Trimble LaserAce 1000, the absolute orientation problem can be defined as the transformation 

between two coordinates systems (Leica C10 and Trimble LaserAce 1000). The relationship 

between measuring devices can be solved by using absolute orientation. Absolute orientation can be 

found by a set of conjugate pairs: {(Pc,l, Pa,l), (Pc,2 Pa,2), ... , (Pc,n, Pa,n)}. For a pair of common 

points in both (camera coordinates and absolute coordinates) systems; rotation, scale and translation 

components can be calculated by Equations 2 to 4, where the matrix R with coefficients RXX, 

RXY, RXZ, RYX, RYY, RYZ, RZX, RZY and RZZ, is the matrix of a linear transformation 

combining a 3D rotation (that can be decomposed into the combinations of 3 rotations along the x, y 

and z axes) and a scaling, and its determinant is the scaling parameter (since the determinant of a 

rotation matrix must equal 1). 
 

XA=RXX XC + RXY YC + RXZ ZC + TX             (2) 
YA=RYX XC + RYY YC + RYZ ZC + TY             (3) 

ZA=RZX XC + RZY YC + RZZ ZC + TZ               (4) 
 

Twelve unknown parameters, including nine linear transformation (combined rotation and scaling) 

parameters and three translations components need to be solved. Each conjugate pair yields three 

equations. The minimum number of required points to solve for the absolute orientation is thus four 

common points. Practically, to get better results with higher accuracy, a higher number of points 
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need to be used. The coordinates of the points measured by the rangefinder can be adjusted, or their 

maximum error can be minimized, by adjusting the coefficients of the rotation matrix R and the 

translation vector (see adjustment results in Table 2). Room number nine has been selected by the 

researcher to calculate its absolute orientation parameters. 

 

Table 2: Coefficient of unknowns including rotation, scale and translation parameters (matrix A). 

 

R X coefficient Y coefficient Z coefficient Translation coefficient 

X -0.6929 -0.6793 -1.6964 2.8987 

Y 0.6850 -0.6981 3.3957 -5.8893 

Z 0.0003 -0.0000 0.0453 1.0590 

 

Absolute orientation can be found by computing the rotation matrix R and the translation vector for 

any given point. Any points measured by the rangefinder can be transferred or absolutely oriented 

by using the corresponding matrix A arrays. Results from calibrating the Trimble LaserAce 1000 

based on the least square adjustment (Absolute orientation) using the Leica C10 data were 

calculated (see Table 3). 

 

Table 3: LaserAce 1000 calibration based on the least square adjustment (Absolute orientation). 

 

Point 

Number 

X 

LaserAce 

Y 

LaserAce 

Z 

LaserAce 

X Leica C10 Y Leica C10 Z Leica C10 

1 10.394 3.7777 1.1067 10.424 3.725 1.105 

2 2.0673 2.3577 1.1122 2.131 2.249 1.109 

3 2.0098 3.2969 1.1098 1.956 3.355 1.109 

4 1.4469 3.1347 1.1094 1.396 3.257 1.116 

5 0.0059 10.678 1.11 0.047 10.605 1.108 

6 8.8322 12.192 1.1128 8.803 12.246 1.115 

 

Considering the Leica C10 data as absolute coordinates, differences between two coordinates can be 

referred as the Trimble LaserAce 1000 accuracy. The model calibrated and reconstructed using the 

Leica C10 is shown in Figure. 8. Model in black lines represents model reconstructed from raw data 

of Trimble LaserAce 1000 and model in blue lines represents model reconstructed from Leica C10. 

Calibrated model of Trimble LaserAce 1000 based on the least square adjustment algorithm from 

Leica C10 data can be seen as red dash line model (see Figure 8). 

 

Since the highest measurement uncertainties are those of the horizontal angles measured by the 

magnetometer of the rangefinder, we focus on the calibration of these magnetometer measurements. 

In order to check the applicability of least squares to range finder calibration, we have applied the 

least squares linear model resulting from the calibration of horizontal angles of room 1 to rooms 10 

and 9. The results are shown in Tables 4, 5 and 6. We can observe that the results for room 9 are not 

satisfactory at all. The least squares methods used in this section assume a linear statistical model of 

propagation of the errors and a normal probability distribution function of the measurements. 

However, in any real measurement experiment, one can observe that no probability distribution 

function actually fits the data set to any desired degree of accuracy. In Section 5, we will see how 

we can relax these assumptions. 
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Table 4: Calibration of room 1 rangefinder horizontal angle measurements using total station 

horizontal angle measurements by least squares. 
 

Point Horizontal angle 

rangefinder 

(decimal degrees) 

Horizontal angle 

theodolite 

(decimal degrees) 

Calibrated (LS) 

rangefinder 

horizontal angle 

Difference 

horizontal angle 

(decimal degrees) 

1 268.9 0 0.4542 -0.4542 

2 336.0 67.745139 67.4293 0.3158 

3 99.6 190.595419 190.7992 -0.2038 

4 166.1 256.477086 257.1754 -0.6983 

5 98.5 190.741669 189.7012 1.0404 

 

Table 5: Calibration of room 10 rangefinder horizontal angle measurements using total station 

horizontal angle measurements by least squares calculated from room 1. 
 

Point Horizontal angle 

rangefinder 

(decimal degrees) 

Horizontal angle 

total station 

(decimal degrees) 

Calibrated (LS) 

rangefinder 

horizontal angle 

 

Difference 

horizontal angle 

(decimal degrees) 

1 259.1 351 350.6725 0.3275 

2 355 86.3  86.3939 -0.0939 

3 77.1 165.85 168.3411 -2.4911 

4  180 274.92 271.0495 3.8705 

 

Table 6: Calibration of room 9 rangefinder horizontal angle measurements using total station 

horizontal angle measurements by least squares calculated from room 1. 

 

Point Horizontal angle 

rangefinder 

(decimal degrees) 

Horizontal angle 

total station 

(decimal degrees) 

Calibrated (LS) 

rangefinder 

horizontal angle  

Difference horizontal 

angle (decimal 

degrees) 

1 51.97 110.03 143.9281 -33.8981 

2 139.6 203.63 231.3949 -27.7649 

3 148.68 228.25 240.4580 -12.208 

4 165.95 248.53 257.6959 -9.1659 

5 322.83 58.22 54.2838 9.9362 

6 60.74 153.62 152.6818 0.9382 
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Figure 8: Model calibrated and reconstructed based on the least square adjustment; rangefinder (red 

dash lines), total station (blue lines) and non-calibrated rangefinder (black lines). 

 

 

4. POLYNOMIAL KERNEL 

 

In this section, polynomial kernel as a non-parametric non-linear method is used to calibrate 

Trimble LaserAce 1000 horizontal angle. In kernel methods, data is embedded into a vector space 

and then linear and non-linear relations between data will be investigated. Basically, kernels are 

functions that return inner products between of the images of data points in vector space. Each 

kernel k(x,z) has an associated feature mapping 𝜑 which takes input x∈X (input space) and maps it 

to F (feature space). Kernel k(x,z), takes two inputs and gives their similarity in F space. 

𝜑 = 𝑋 → 𝐹 

𝑘 = 𝑋 × 𝑋 → 𝑅𝑘(𝑥, 𝑧) = 𝜑(𝑥)𝑇𝜑(𝑧) 
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F needs to be a vector space with a dot product to define it, also called a Hilbert space (Browder and 

Petryshyn, 1967; Akhiezer and Glazman, 2013). For k to be a kernel function, a Hilbert space F 

must exist and k must define a dot product and be positive definite. 

∫ 𝑑𝑥∫ 𝑑𝑧𝑓(𝑥)𝑘(𝑥, 𝑧)𝑓(𝑧) > 0 
 

There are several kernel function including linear kernel  

𝑘(𝑥, 𝑧) = 𝑥𝑇𝑧 

quadratic kernel  

k(x, z)  = (x𝑇z)2 

 polynomial kernel 

k(x, z)  = (x𝑇z)𝑑 

and Radial Basis Function (RBF) kernel 

𝑘(𝑥, 𝑧) = 𝑒𝑥𝑝[−𝛾‖𝑥 − 𝑧‖2] 

In this section, we use polynomial kernel to find similarities between the rangefinder horizontal 

angles and the total station horizontal angles and then, to use calculated parameters to calibrate the 

rangefinder horizontal angles. Table 7 represents results of calibrated horizontal angle of Trimble 

LaserAce 1000 using different degrees of polynomial kernel, while Table 8 represents the analog 

results for room 10 using least square parameters calculated for room 1. As can be seen in Table 8, 

these results are not satisfactory. The results for room 9 are even less satisfactory (thus, omitted). 
 

Table 7: Calibration of room 1 rangefinder horizontal angle measurements using total station 

horizontal angle measurements by polynomial kernels. 

 

Point Horizontal 

angle 

rangefinder  

Horizontal 

angle 

theodolite 

Calibrated 

rangefinder 

horizontal angle 

(degree=1) 

Calibrated 

rangefinder 

horizontal angle 

(degree=2)  

Calibrated 

rangefinder 

horizontal angle 

(degree=3) 

1 268.9 0 84.5  88.995 0.03656 

2 336.0 67.745139 33.906 29.145 67.734 

3 99.6 190.595419 212.16 209.66 193.08 

4 166.1 256.477086 162.01 167.45 256.38 

5 98.5 190.741669 212.98 210.31 188.32 

 

Table 8: Calibration of room 10 rangefinder horizontal angle measurements using total station 

horizontal angle measurements by polynomial kernel calculated from room 1. 
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Point Horizontal 

angle 

rangefinder 

(decimal 

degrees) 

Horizontal 

angle total 

station 

(decimal 

degrees) 

Calibrated 

rangefinder 

horizontal angle 

(polynomial 

kernel, degree=1) 

Calibrated 

rangefinder 

horizontal angle 

(polynomial 

kernel, degree=2) 

Calibrated 

rangefinder 

horizontal angle 

(polynomial 

kernel, degree=3) 

1 259.1 351  91.8897 97.1652 17.8313 

2 355 86.3  19.5796 10.9583 174.1801 

3 77.1 165.85  229.1206 222.4298 64.3471 

4  180 274.92 151.5324 157.7771 229.6545 

 

 

5. INTERVAL ANALYSIS AND HOMOTOPY CONTINUATION 

 

Interval analysis is a well-known method for computing bounds of a function, being given bounds 

on the variables of that function (E. Ramon Moore and Cloud, 2009). The basic mathematical object 

in interval analysis is the interval instead of the variable. The operators need to be redefined to 

operate on intervals instead of real variables. This leads to an interval arithmetic. In the same way, 

most usual mathematical functions are redefined by an interval equivalent. Interval analysis allows 

one to certify computations on intervals by providing bounds on the results. The uncertainty of each 

measure can be represented using an interval defined either by a lower bound and a higher bound or 

a midpoint value and a radius. 

 

In this paper, we use interval analysis to model the uncertainty of each measurement of horizontal 

angle and horizontal distance done by the range finder. We represent the geometric loci 

corresponding to each surveyed point as functions of the bounds of each measurement. Thus, for 

distances observed from a position of the range finder, we represent the possible position of the 

surveyed point by two concentric circles centered on the position of the range finder and of radii the 

measured distance plus and minus the uncertainty on the distance respectively (see Figure 9). For 

horizontal angles observed from a position of the range finder, we represent the possible position of 

the surveyed point by two rays emanating from the position of the range finder and whose angles 

with respect to a given point or the North are the measured angle plus and minus the uncertainty on 

the horizontal angle respectively (see Figure 9). Therefore, the surveyed point must be within a 

region bounded by these 4 loci: in between 2 concentric circles and 2 rays. Proceeding in the same 

way for each room, we get the geometric loci for each room and for the union of the surveyed 

rooms (see Figure 9). 

 

A homotopy is a continuous deformation of geometric figures or paths or more generally functions: 

a function (or a path, or a geometric figure) is continuously deformed into another one (Allgower 

and Georg, 1990). The use of homotopies can be tracked back to works of Poincaré (1881-1886), 

Klein (1882-1883), and Berstein (1910) (Allgower and Georg, 1990). The use of homotopies to 

solve non-linear systems of equations may be traced back at least to Lahaye (1934) (Allgower and 

Georg, 1990).  
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Figure 9: The geometric loci of each corner of a room as a function of all the measurements 

 

 

 
Figure 10: Room 1 construction from original range finder measurements (red) and interval valued 

homotopy continuation calibration of horizontal angles measurements (blue) 
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A homotopy between two continuous functions f and f from a topological space X to a topological 

space Y is defined as a continuous map H: X × [0, 1] → Y from the Cartesian product of the 

topological space X with the unit interval [0, 1] to Y such that H(x, 0) = f0, and H(x, 1) = f1, where 

x ∈ X. The two functions f0 and f1 are called respectively the initial and terminal maps. The second 

parameter of H, also called the homotopy parameter, allows for a continuous deformation of f0 to f1 

(Allgower and Georg, 1990). Two continuous functions f0 and f1 are said to be homotopic, denoted 

by f0 ≃ f1, if, and only if, there is a homotopy H taking f0 to f1. Being homotopic is an equivalence 

relation on the set C(X, Y) of all continuous functions from X to Y. 

 

In this paper, we used homotopy to calibrate the range finder. The main idea is that assuming a 

linear model and a normal probability distribution function, we only assume that the calibration of 

the set of our range finder measurements with respect to the set of measurements of our total station 

can be done continuously, because there is no discontinuity in the n-dimensional space 

corresponding to the space of measurements performed using the range finder and the total station. 

Even though, not all real numbers are representable in a digital measurement device, we can assume 

that all the real numbers corresponding to measurements can be obtained physically, and it is just 

the fixed point notation used by the digital measurement device, that limits the set of representable 

real numbers to a discrete subset of the set of real numbers. Thus, we can compute the calibration of 

the range finder as a continuous function mapping our measurements obtained using our range 

finder to the measurements obtained using our total station. 

 

The results of the linear homotopy continuation are presented in Figures 10 and Tables 10-13. One 

can calibrate the differences of horizontal angles observed with the rangefinder to the differences of 

horizontal angles observed with the theodolite. One can start from any point and point and assume 

that the measurement of the horizontal angle of that point by the rangefinder will not be changed by 

the calibration process. Without loose of generality, this point can be the first observed point. Now 

the idea for the calibration is that we are using each one of the intervals between measurements of 

horizontal angles made with the rangefinder, and we calibrate the new measurements of horizontal 

angles made by the rangefinder in each one of these intervals as a non-linear homotopy, where the 

homotopy parameter is the relative position of the measured horizontal angle in between the bounds 

of the enclosing interval of rangefinder horizontal angles. This homotopy calibration can be 

visualized as the continuous deformation of each sector (defined by the rangefinder horizontal angle 

intervals of room 1) of a plastic disk (corresponding to the old time theodolite graduated disk) to the 

corresponding sector of the total station's theodolite graduated disk. We used the intervals of total 

station horizontal angles of room 1 as reference intervals for all other horizontal angle 

measurements in rooms 1, 9 and 10. In the remainder of the paper, ”the homotopy parameter of a 

horisontal angle measurement” is equivalent to ”the relative position of the horizontal angle 

measurement in the corresponding reference interval”. We fitted a polynopmial of degree 5 through 

the 4 points whose x-coordinates are the homotopy parameters of the horizontal angles measured by 

the rangefinder in room 10 and the corresponding homotopy parameters of the horizontal angles 

measured by the total station in room 10 and the points (0,0) and (1,1). We used this polynomial as 

the convex homotopy functlon that maps the uncalibrated homotopy paramter to the calibrated one. 

 

The initial and terminal maps correspond respectively to the mappings between the uncalibrated and 

calibrated horizontal angles at the start point and the end point of the enclosing interval of 

horizontal angles measured by the range finder. We can observe that, contrary to the least squares 

calibration, the only limitation of this interval analysis and homotopy continuation based calibration 

is the precision of the fixed point arithmetic used by the computing device used for the calibration. 

The results shown in Tables 11 and 12 prove that homotopies give the best results both in terms of 

RMSE and the L∞ metric.  
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Table 9: Calibration of room 1 rangefinder horizontal angle measurements by homotopies. 

 

Point Rangefinder 

horizontal 

angle 

Theodolite 

horizontal 

angle 

Calibrated 

rangefinder 

horizontal angle 

Theodolite internal 

angle 

Calibrated 

rangefinder 

internal angle  

1 268.9 0 268.9 67.745139 67.745139 

2 336.0 67.745139 336.645139 122.85028 122.85028 

3 99.6 190.595419 99.495417 65.881667 65.881667 

4 166.1 256.477086 165.377083 294.264583 294.264583 

5 98.5 190.741669 99.641667 169.258333 169.258333 

 

Table 10: Calibration of room 10 rangefinder horizontal angle measurements by homotopies 

 

Point Horizontal angle 

rangefinder  

Horizontal 

angle total 

station 

Value of 

λ 

Calibrated 

horizontal 

angle linear 

homotopy 

Calibrated horiz-

ontal angle 0.9325 

non-linear homotopy 

1 259.1 351 0.969504 259.753998 265.17 

2 355 86.3  0.198541 355.0770128 359.6978 

3 77.1 165.85 0.845307 77.50978924 81.0424 

4  180 274.92 0.220426 180.0977481 189.3224 

 

Table 11: Calibration of room 10 rangefinder horizontal angle measurements using total station 

horizontal angle measurements by homotopies, least squares and polynomial kernel. 

 

Point Horizontal 

angle 

rangefinder  

Horizontal 

angle total 

station 

Calibrated 

rangefinder 

horizontal 

angle 

(homotopy) 

Calibrated 

rangefinder 

horizontal 

angle (least 

squares) 

Calibrated 

rangefinder 

horizontal angle  

(polynomial 

kernel, degree=3) 

1 259.1 

Δ2-1=95.9 

351 

Δ2-1=95.3 

265.17 

Δ2-1=95.3 
350.6725 

Δ 2-1=95.7214 

17.8313 

Δ 2-1 = 156.3488  

2 355 

Δ3-2=82.1 

86.3 

Δ 3-2=79.55 

1.0650 

Δ3-2=79.55 
86.3939 

Δ3-2=81.9472 

174.1801 

Δ 3-2 = 250.167 

3 77.1 

Δ4-3=102,9 

165.85 

Δ4-3=109.07 

80.6150 

Δ4-3 =109.07 
168.3411 

Δ4-3=102.7084 

64.3471 

Δ 4-3 =250.167 

4  180  

Δ1-4=79.1 

274.92 

Δ1-4=76.08 
 189.6850 

Δ1-4= 76.08 

271.0495 

Δ1-4=79.623 

229.6545 

Δ1-4=148.1768 
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Table 12: Calibration of room 9 rangefinder horizontal angle measurements using total station 

horizontal angle measurements by homotopies, least squares and polynomial kernel. 

 

Point Horizontal 

angle 

rangefinder  

Horizontal 

angle total 

station 

Calibrated 

rangefinder 

horizontal angle 

(homotopy) 

Calibrated 

rangefinder 

horizontal 

angle (least 

squares) 

Calibrated 

rangefinder 

horizontal angle  

(polynomial kernel, 

degree=3) 

1 51.97 

Δ2-1=87.63 

110.03 

Δ2-1=93.60 

4.308545 

Δ2-1=106.17 
143.9281 

Δ 2-1=87.4668 

192.7481 

Δ 2-1 = 83.7548 

2 139.6 

Δ3-2=9.08 

203.63 

Δ 3-2=24.62 

110.483030 

Δ3-2=28.77 
231.3949 

Δ3-2=9.0631 

276.4829 

Δ 3-2 = -1.4685 

3 148.68 

Δ4-3=17.27 

228.25 

Δ4-3=20.28 

139.255751 

Δ4-3 =24.388128 
240.4580 

Δ4-3=17.2379 

275.0144 

Δ 4-3 =-18.3127 

4 165.95 

Δ5-4=56.88 

248.53 

Δ5-4=169.69 
 163.643879 

Δ1-4=158.228290 

257.6959 

Δ1-4=156.5879 

256.6217 

Δ1-4=123.8914 

5 322.83 

Δ6-5=97.91 

58.22 

Δ6-5=95.4 

321.872119 

Δ6-5=71.076556 

54.2838 

Δ6-5=98.3980 

20.5131 

Δ6-5=264.5526 

6 60.74 

Δ1-6=351.23 

153.62 

Δ1-6=316.41 

32.948675 

Δ1-6=331.359870 

152.6818 

Δ1-6=349.2463 

285.0657 

Δ1-6=267.6824 

 

 

 

6. CONCLUSIONS 

 

The proposed research is to demonstrate the feasibility of interior surveying for full 3D building 

modelling.. The main objective of this research was to propose a methodology for data capturing in 

indoor building environment. A rangefinder was compared to a high accurate surveying device 

(Leica scanstation C10) using weighted least squares, polynomial kernel and a novel technique 

based on interval analysis and homotopy continuation. In an indoor environment, the Trimble 

LaserAce 1000 showed inconsistencies within the uncertainty ranges claimed by the manufacturer 

for short distances in the horizontal angle. Rangefinder data was calibrated by least square 

adjustment (absolute orientation) which shows a maximum error of 13 centimeters and a minimum 

error of 6 centimeters using the Leica scanstation C10 as a benchmark. By opposition, the combined 

interval analysis and homotopy continuation technique calibration obtained by continuous 

deformation of the function mapping the rangefinder measurements to the theodolite measurements 

allows a much better match, whose only limitation is the fixed point arithmetic of the computing 

device used to perform the computation. Results from polynomial kernel are not satisfactory (see 

Tables 8 and 11). 
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