16 research outputs found

    Cancer-testis gene expression is associated with the methylenetetrahydrofolate reductase 677 C\u3eT polymorphism in non-small cell lung carcinoma

    Get PDF
    BACKGROUND: Tumor-specific, coordinate expression of cancer-testis (CT) genes, mapping to the X chromosome, is observed in more than 60% of non-small cell lung cancer (NSCLC) patients. Although CT gene expression has been unequivocally related to DNA demethylation of promoter regions, the underlying mechanism leading to loss of promoter methylation remains elusive. Polymorphisms of enzymes within the 1-carbon pathway have been shown to affect S-adenosyl methionine (SAM) production, which is the sole methyl donor in the cell. Allelic variants of several enzymes within this pathway have been associated with altered SAM levels either directly, or indirectly as reflected by altered levels of SAH and Homocysteine levels, and altered levels of DNA methylation. We, therefore, asked whether the five most commonly occurring polymorphisms in four of the enzymes in the 1-carbon pathway associated with CT gene expression status in patients with NSCLC. METHODS: Fifty patients among a cohort of 763 with NSCLC were selected based on CT gene expression status and typed for five polymorphisms in four genes known to affect SAM generation by allele specific q-PCR and RFLP. RESULTS: We identified a significant association between CT gene expression and the MTHFR 677 CC genotype, as well as the C allele of the SNP, in this cohort of patients. Multivariate analysis revealed that the genotype and allele strongly associate with CT gene expression, independent of potential confounders. CONCLUSIONS: Although CT gene expression is associated with DNA demethylation, in NSCLC, our data suggests this is unlikely to be the result of decreased MTHFR function

    Cancer-testis gene expression is associated with the methylenetetrahydrofolate reductase 677 C>T polymorphism in non-small cell lung carcinoma

    Get PDF
    Background: Tumor-specific, coordinate expression of cancer-testis (CT) genes, mapping to the X chromosome, is observed in more than 60% of non-small cell lung cancer (NSCLC) patients. Although CT gene expression has been unequivocally related to DNA demethylation of promoter regions, the underlying mechanism leading to loss of promoter methylation remains elusive. Polymorphisms of enzymes within the 1-carbon pathway have been shown to affect S-adenosyl methionine (SAM) production, which is the sole methyl donor in the cell. Allelic variants of several enzymes within this pathway have been associated with altered SAM levels either directly, or indirectly as reflected by altered levels of SAH and Homocysteine levels, and altered levels of DNA methylation. We, therefore, asked whether the five most commonly occurring polymorphisms in four of the enzymes in the 1-carbon pathway associated with CT gene expression status in patients with NSCLC.Publisher's Versio

    Frequent and specific immunity to the embryonal stem cell–associated antigen SOX2 in patients with monoclonal gammopathy

    Get PDF
    Specific targets of cellular immunity in human premalignancy are largely unknown. Monoclonal gammopathy of undetermined significance (MGUS) represents a precursor lesion to myeloma (MM). We show that antigenic targets of spontaneous immunity in MGUS differ from MM. MGUS patients frequently mount a humoral and cellular immune response against SOX2, a gene critical for self-renewal in embryonal stem cells. Intranuclear expression of SOX2 marks the clonogenic CD138− compartment in MGUS. SOX2 expression is also detected in a proportion of CD138+ cells in MM patients. However, these patients lack anti-SOX2 immunity. Cellular immunity to SOX2 inhibits the clonogenic growth of MGUS cells in vitro. Detection of anti-SOX2 T cells predicts favorable clinical outcome in patients with asymptomatic plasmaproliferative disorders. Harnessing immunity to antigens expressed by tumor progenitor cells may be critical for prevention and therapy of human cancer

    Predictive Gene Signature for Pyrazolopyrimidine Derivative c-Src Inhibitor 10a Sensitivity in Melanoma Cells.

    No full text
    Melanoma is a highly aggressive cancer with poor prognosis. Although more than 80% of melanomas harbor an activating mutation in genes within the MAPK pathway, which are mutually exclusive, usefulness of therapies targeting MAPK pathway are impeded by innate and/or acquired resistance in most patients. In this study, using melanoma cells, we report the efficacy of a recently developed pyrazolo[3,4-]pyrimidine derived c-Src inhibitor 10a and identify a molecular signature which is predictive of 10a chemosensitivity. We show that the expression of TMED7, PLOD2, XRCC5, and NSUN5 are candidate biomarkers for 10a sensitivity. Although an undifferentiated/mesenchymal/invasive status of melanoma cells is associated with resistance to 10a, we show here for the first time that melanoma cells can be sensitized to 10a via treatment with valproic acid, a histone deacetylase inhibitor

    Phenotype-based variation as a biomarker of sensitivity to molecularly targeted therapy in melanoma

    No full text
    Transcriptomic phenotypes defined for melanoma have been reported to correlate with sensitivity to various drugs. In this study, we aimed to define a minimal signature that could be used to distinguish melanoma sub-types in vitro, and to determine suitable drugs by which these sub-types can be targeted. By using primary melanoma cell lines, as well as commercially available melanoma cell lines, we find that the evaluation of MLANA and INHBA expression is as capable as one based on a combined analysis performed with genes for stemness, EMT and invasion/proliferation, in identifying melanoma subtypes that differ in their sensitivity to molecularly targeted drugs. Using this approach, we find that 75% of melanoma cell lines can be treated with either the MEK inhibitor AZD6244 or the HSP90 inhibitor 17AAG

    Anti-neuronal and stress-induced-phosphoprotein 1 antibodies in neuro-Behcet's disease

    No full text
    No disease-specific neuronal antibodies have so far been defined in neuro-Behcet's disease (NBD). Immunohistochemistry and immunocytochemistry studies showed antibodies to hippocampal and cerebellar molecular layers and the surface antigens of cultured hippocampal neurons in sera and/or cerebrospinal fluids (CSF) of 13 of 20 NBD and 6 of 20 BD patients but not in multiple sclerosis or headache controls. Screening with a protein macroarray led to identification of stress-induced-phosphoprotein-1 (STIP-1) as an antigenic target. High-titer STIP-1-antibodies were detected in 6 NBD patients' sera but not in controls. These results suggest that neuronal antibodies could be useful as diagnostic biomarkers in NBD. (C) 2011 Elsevier B.V. All rights reserved

    Predictive Gene Signature for Pyrazolopyrimidine Derivative c-Src Inhibitor 10a Sensitivity in Melanoma Cells

    No full text
    Melanoma is a highly aggressive cancer with poor prognosis. Although more than 80\% of melanomas harbor an activating mutation in genes within the MAPK pathway, which are mutually exclusive, usefulness of therapies targeting MAPK pathway are impeded by innate and/or acquired resistance in most patients. In this study, using melanoma cells, we report the efficacy of a recently developed pyrazolo{[}3,4-d]pyrimidine derived c-Src inhibitor 10a and identify a molecular signature which is predictive of 10a chemosensitivity. We show that the expression of TMED7, PLOD2, XRCCS, and NSUNS are candidate biomarkers for 10a sensitivity. Although an undifferentiated/mesenchymal/invasive status of melanoma cells is associated with resistance to 10a, we show here for the first time that melanoma cells can be sensitized to 10a via treatment with valproic acid, a histone deacetylase inhibitor
    corecore