13 research outputs found

    Drosophila Bitter Taste(s)

    Get PDF
    International audienceMost animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called ``bitter''. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different ``categories'' of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of ``bitter'' tasting

    Physiologie des récepteurs gustatifs chez la mouche de vinaigre (Drosophila melanogaster)

    No full text
    In most animals including insects, ingestion is preceded by a close examination of the food, for example in order to detect the presence of potentially noxious chemicals. This detection involves specialized gustatory cells, which are generally described as sensitive to “bitter” tastes. Using electrophysiology and behavioral observations, we studied how a model insect, Drosophila melanogaster, can detect potentially toxic substances (described here as “bitter”) when mixed with sugar molecules, with their gustatory neurons. In a first part, we studied how L-canavanine is detected. Lcanavanine is a pseudo amino acid, which is confounded with L-arginine by the metabolism. Proteins which include Lcanavanine are non-functional and this compound is toxic for animals including insects. Using genetic constructions based on the UAS-Gal4 expression system, we showed that Lcanavanine is detected by gustatory cells expressing a receptor protein, GR66a, which is specific to most cells capable of detecting bitter substances. We also showed that, contrary to caffeine, the detection of L-canavanine requires functional Gαo proteins. Then, we studied some aspects of the detection of mixtures of sweet and bitter molecules. In a first approach, we contributed to establish that L-canavanine does not impact sugar detection, while other chemicals like strychnine completely inhibit sugar detection. By using the UAS-Gal4 system to ablate bitter-sensitive cells, we could demonstrate that such inhibition is a specific property of sugar- sensitive cells. These cells should have thus receptors for bitter substances which have not been identified yet. We also examined the reverse interaction, which is a possible role of sweet molecules to inhibit the detection of bitter substances. We examined the detection of denatonium, berberine, caffeine and umbelliferone in the presence of 12 different sugars, using behavioral and electrophysiology observations. By using genetic construction to ablate sugar-sensitive cells, we found that the sugar inhibitory action is not due to the presence of sugar-sensitive cells. It should be noted, however that in our experimental conditions, this inhibitory action is less efficient than the inhibition of bitter upon sugar detection. In a last part, we examined the modulation of gustatory perception by analogs of leucokinine, which is a neuropeptide involved in the diuresis of insects. We show that these analogs, when mixed with sugars in solution, can inhibit sugar detection by gustatory sensilla, both in Aedes aegypti mosquitoes and in Drosophila. The detection of bitter molecules by gustatory neurons in Drosophila thus involves two main coding channels: one is specific, and involves gustatory cells dedicated to the detection of bitter molecules; the second one, less specific, is affecting cells which are dedicated to the detection of sugar molecules. Gustatory coding is thus a more complex phenomenon than previously thought on the basis of examining responses to single molecules, thus urging to study the responses of gustatory receptors to more complex and natural mixtures.Chez les animaux et en particulier les insectes, l’alimentation comprend une phase d’examen sensoriel qui précède l’ingestion, afin notamment d’éviter d’ingérer des substances toxiques. Cette détection fait intervenir des cellules spécialisées dans la détection de telles molécules, cellules qui sont généralement qualifiées de sensibles aux goûts « amers ». A l’aide d’observations électrophysiologiques et comportementales, nous avons abordé comment un insecte modèle, la drosophile, était capable de détecter des substances potentiellement toxiques mélangées à des sucres à l’aide de ses neurones gustatifs. Dans une première partie, nous avons étudié la détection de la L-canavanine, qui est un acide aminé non protéique. Cette molécule est toxique pour l’homme comme pour les animaux car elle est confondue par le métabolisme avec un acide aminé, la L-arginine, et intégrée à sa place dans les protéines. En utilisant des constructions génétiques et en particulier le système UAS-Gal4, nous avons montré que la Lcanavanine est détectée par des cellules gustatives qui expriment une protéine réceptrice GR66a, qui est impliquée dans la détection de nombreuses substances amères. Nous avons également montré que, contrairement à la caféine, la détection de L-canavanine nécessite des protéines Gαo fonctionnelles. Nous avons ensuite étudié les interactions sucré-amer. Dans un premier travail, nous avons montré que l’addition de Lcanavanine une solution sucrée n’altérait pas la détection des sucres, contrairement à la strychnine qui peut complètement supprimer la détection du sucre dans les cellules gustatives. Grâce à des ablations spécifiques des cellules détectant l’amer, nous avons pu montrer que cette inhibition était une propriété intrinsèque des cellules sensibles aux. sucres. Les cellules sensibles aux sucres auraient donc des sites récepteurs non identifiés, sensibles à certains ligands amers. Nous avons également abordé des interactions inverses, à savoir l’inhibition de la détection de substances amères par des sucres, en confrontant 4 substances amères (denatonium, berberine, caféine, umbelliferone) à 12 sucres. Les observations que nous avons réalisées montrent que certains sucres exercent un effet inhibiteur sur la détection des molécules amères testées. En utilisant des outils génétiques permettant l’ablation des cellules sensibles aux sucres, nous avons montré que cette inhibition est une propriété intrinsèque des cellules sensibles à l’amer. Cependant, cet effet inhibiteur est loin d’être aussi efficace que l’inhibition des substances amères sur la détection des sucres. Dans une dernière partie, nous avons évalué la modulation de la détection gustative à l’aide d’analogues d’une neuro-hormone, la leucokinine, connue pour ses effets sur la diurèse. Lorsqu’elle est mélangée à une solution sucrée, ces analogues inhibent la détection des sucres par les sensilles gustatives, à la fois chez le moustique Aedes aegypti et chez la drosophile. La détection de substances « amères » par les cellules gustatives de drosophiles implique donc deux voies de codage : l’une, spécifique, concerne des cellules dédiées à la détection des substances amères ; l’autre, moins spécifique, affecte les cellules dédiées à la détection des sucres. De manière réciproque, ces cellules dédiées à la détection des molécules sont affectées par la présence de ligands sucrés. Le codage des informations gustatives à la périphérie est donc un phénomène plus complexe qui nécessite d’étudier plus précisément la détection de composés en mélanges

    Physiologie des récepteurs gustatifs chez la mouche de vinaigre (Drosophila melanogaster)

    No full text
    In most animals including insects, ingestion is preceded by a close examination of the food, for example in order to detect the presence of potentially noxious chemicals. This detection involves specialized gustatory cells, which are generally described as sensitive to “bitter” tastes. Using electrophysiology and behavioral observations, we studied how a model insect, Drosophila melanogaster, can detect potentially toxic substances (described here as “bitter”) when mixed with sugar molecules, with their gustatory neurons. In a first part, we studied how L-canavanine is detected. Lcanavanine is a pseudo amino acid, which is confounded with L-arginine by the metabolism. Proteins which include Lcanavanine are non-functional and this compound is toxic for animals including insects. Using genetic constructions based on the UAS-Gal4 expression system, we showed that Lcanavanine is detected by gustatory cells expressing a receptor protein, GR66a, which is specific to most cells capable of detecting bitter substances. We also showed that, contrary to caffeine, the detection of L-canavanine requires functional Gαo proteins. Then, we studied some aspects of the detection of mixtures of sweet and bitter molecules. In a first approach, we contributed to establish that L-canavanine does not impact sugar detection, while other chemicals like strychnine completely inhibit sugar detection. By using the UAS-Gal4 system to ablate bitter-sensitive cells, we could demonstrate that such inhibition is a specific property of sugar- sensitive cells. These cells should have thus receptors for bitter substances which have not been identified yet. We also examined the reverse interaction, which is a possible role of sweet molecules to inhibit the detection of bitter substances. We examined the detection of denatonium, berberine, caffeine and umbelliferone in the presence of 12 different sugars, using behavioral and electrophysiology observations. By using genetic construction to ablate sugar-sensitive cells, we found that the sugar inhibitory action is not due to the presence of sugar-sensitive cells. It should be noted, however that in our experimental conditions, this inhibitory action is less efficient than the inhibition of bitter upon sugar detection. In a last part, we examined the modulation of gustatory perception by analogs of leucokinine, which is a neuropeptide involved in the diuresis of insects. We show that these analogs, when mixed with sugars in solution, can inhibit sugar detection by gustatory sensilla, both in Aedes aegypti mosquitoes and in Drosophila. The detection of bitter molecules by gustatory neurons in Drosophila thus involves two main coding channels: one is specific, and involves gustatory cells dedicated to the detection of bitter molecules; the second one, less specific, is affecting cells which are dedicated to the detection of sugar molecules. Gustatory coding is thus a more complex phenomenon than previously thought on the basis of examining responses to single molecules, thus urging to study the responses of gustatory receptors to more complex and natural mixtures.Chez les animaux et en particulier les insectes, l’alimentation comprend une phase d’examen sensoriel qui précède l’ingestion, afin notamment d’éviter d’ingérer des substances toxiques. Cette détection fait intervenir des cellules spécialisées dans la détection de telles molécules, cellules qui sont généralement qualifiées de sensibles aux goûts « amers ». A l’aide d’observations électrophysiologiques et comportementales, nous avons abordé comment un insecte modèle, la drosophile, était capable de détecter des substances potentiellement toxiques mélangées à des sucres à l’aide de ses neurones gustatifs. Dans une première partie, nous avons étudié la détection de la L-canavanine, qui est un acide aminé non protéique. Cette molécule est toxique pour l’homme comme pour les animaux car elle est confondue par le métabolisme avec un acide aminé, la L-arginine, et intégrée à sa place dans les protéines. En utilisant des constructions génétiques et en particulier le système UAS-Gal4, nous avons montré que la Lcanavanine est détectée par des cellules gustatives qui expriment une protéine réceptrice GR66a, qui est impliquée dans la détection de nombreuses substances amères. Nous avons également montré que, contrairement à la caféine, la détection de L-canavanine nécessite des protéines Gαo fonctionnelles. Nous avons ensuite étudié les interactions sucré-amer. Dans un premier travail, nous avons montré que l’addition de Lcanavanine une solution sucrée n’altérait pas la détection des sucres, contrairement à la strychnine qui peut complètement supprimer la détection du sucre dans les cellules gustatives. Grâce à des ablations spécifiques des cellules détectant l’amer, nous avons pu montrer que cette inhibition était une propriété intrinsèque des cellules sensibles aux. sucres. Les cellules sensibles aux sucres auraient donc des sites récepteurs non identifiés, sensibles à certains ligands amers. Nous avons également abordé des interactions inverses, à savoir l’inhibition de la détection de substances amères par des sucres, en confrontant 4 substances amères (denatonium, berberine, caféine, umbelliferone) à 12 sucres. Les observations que nous avons réalisées montrent que certains sucres exercent un effet inhibiteur sur la détection des molécules amères testées. En utilisant des outils génétiques permettant l’ablation des cellules sensibles aux sucres, nous avons montré que cette inhibition est une propriété intrinsèque des cellules sensibles à l’amer. Cependant, cet effet inhibiteur est loin d’être aussi efficace que l’inhibition des substances amères sur la détection des sucres. Dans une dernière partie, nous avons évalué la modulation de la détection gustative à l’aide d’analogues d’une neuro-hormone, la leucokinine, connue pour ses effets sur la diurèse. Lorsqu’elle est mélangée à une solution sucrée, ces analogues inhibent la détection des sucres par les sensilles gustatives, à la fois chez le moustique Aedes aegypti et chez la drosophile. La détection de substances « amères » par les cellules gustatives de drosophiles implique donc deux voies de codage : l’une, spécifique, concerne des cellules dédiées à la détection des substances amères ; l’autre, moins spécifique, affecte les cellules dédiées à la détection des sucres. De manière réciproque, ces cellules dédiées à la détection des molécules sont affectées par la présence de ligands sucrés. Le codage des informations gustatives à la périphérie est donc un phénomène plus complexe qui nécessite d’étudier plus précisément la détection de composés en mélanges

    Physiology of gustatory receptor neurons in the fruit fly (Drosophila melanogaster)

    No full text
    Chez les animaux et en particulier les insectes, l’alimentation comprend une phase d’examen sensoriel qui précède l’ingestion, afin notamment d’éviter d’ingérer des substances toxiques. Cette détection fait intervenir des cellules spécialisées dans la détection de telles molécules, cellules qui sont généralement qualifiées de sensibles aux goûts « amers ». A l’aide d’observations électrophysiologiques et comportementales, nous avons abordé comment un insecte modèle, la drosophile, était capable de détecter des substances potentiellement toxiques mélangées à des sucres à l’aide de ses neurones gustatifs. Dans une première partie, nous avons étudié la détection de la L-canavanine, qui est un acide aminé non protéique. Cette molécule est toxique pour l’homme comme pour les animaux car elle est confondue par le métabolisme avec un acide aminé, la L-arginine, et intégrée à sa place dans les protéines. En utilisant des constructions génétiques et en particulier le système UAS-Gal4, nous avons montré que la Lcanavanine est détectée par des cellules gustatives qui expriment une protéine réceptrice GR66a, qui est impliquée dans la détection de nombreuses substances amères. Nous avons également montré que, contrairement à la caféine, la détection de L-canavanine nécessite des protéines Gαo fonctionnelles. Nous avons ensuite étudié les interactions sucré-amer. Dans un premier travail, nous avons montré que l’addition de Lcanavanine une solution sucrée n’altérait pas la détection des sucres, contrairement à la strychnine qui peut complètement supprimer la détection du sucre dans les cellules gustatives. Grâce à des ablations spécifiques des cellules détectant l’amer, nous avons pu montrer que cette inhibition était une propriété intrinsèque des cellules sensibles aux. sucres. Les cellules sensibles aux sucres auraient donc des sites récepteurs non identifiés, sensibles à certains ligands amers. Nous avons également abordé des interactions inverses, à savoir l’inhibition de la détection de substances amères par des sucres, en confrontant 4 substances amères (denatonium, berberine, caféine, umbelliferone) à 12 sucres. Les observations que nous avons réalisées montrent que certains sucres exercent un effet inhibiteur sur la détection des molécules amères testées. En utilisant des outils génétiques permettant l’ablation des cellules sensibles aux sucres, nous avons montré que cette inhibition est une propriété intrinsèque des cellules sensibles à l’amer. Cependant, cet effet inhibiteur est loin d’être aussi efficace que l’inhibition des substances amères sur la détection des sucres. Dans une dernière partie, nous avons évalué la modulation de la détection gustative à l’aide d’analogues d’une neuro-hormone, la leucokinine, connue pour ses effets sur la diurèse. Lorsqu’elle est mélangée à une solution sucrée, ces analogues inhibent la détection des sucres par les sensilles gustatives, à la fois chez le moustique Aedes aegypti et chez la drosophile. La détection de substances « amères » par les cellules gustatives de drosophiles implique donc deux voies de codage : l’une, spécifique, concerne des cellules dédiées à la détection des substances amères ; l’autre, moins spécifique, affecte les cellules dédiées à la détection des sucres. De manière réciproque, ces cellules dédiées à la détection des molécules sont affectées par la présence de ligands sucrés. Le codage des informations gustatives à la périphérie est donc un phénomène plus complexe qui nécessite d’étudier plus précisément la détection de composés en mélanges.In most animals including insects, ingestion is preceded by a close examination of the food, for example in order to detect the presence of potentially noxious chemicals. This detection involves specialized gustatory cells, which are generally described as sensitive to “bitter” tastes. Using electrophysiology and behavioral observations, we studied how a model insect, Drosophila melanogaster, can detect potentially toxic substances (described here as “bitter”) when mixed with sugar molecules, with their gustatory neurons. In a first part, we studied how L-canavanine is detected. Lcanavanine is a pseudo amino acid, which is confounded with L-arginine by the metabolism. Proteins which include Lcanavanine are non-functional and this compound is toxic for animals including insects. Using genetic constructions based on the UAS-Gal4 expression system, we showed that Lcanavanine is detected by gustatory cells expressing a receptor protein, GR66a, which is specific to most cells capable of detecting bitter substances. We also showed that, contrary to caffeine, the detection of L-canavanine requires functional Gαo proteins. Then, we studied some aspects of the detection of mixtures of sweet and bitter molecules. In a first approach, we contributed to establish that L-canavanine does not impact sugar detection, while other chemicals like strychnine completely inhibit sugar detection. By using the UAS-Gal4 system to ablate bitter-sensitive cells, we could demonstrate that such inhibition is a specific property of sugar- sensitive cells. These cells should have thus receptors for bitter substances which have not been identified yet. We also examined the reverse interaction, which is a possible role of sweet molecules to inhibit the detection of bitter substances. We examined the detection of denatonium, berberine, caffeine and umbelliferone in the presence of 12 different sugars, using behavioral and electrophysiology observations. By using genetic construction to ablate sugar-sensitive cells, we found that the sugar inhibitory action is not due to the presence of sugar-sensitive cells. It should be noted, however that in our experimental conditions, this inhibitory action is less efficient than the inhibition of bitter upon sugar detection. In a last part, we examined the modulation of gustatory perception by analogs of leucokinine, which is a neuropeptide involved in the diuresis of insects. We show that these analogs, when mixed with sugars in solution, can inhibit sugar detection by gustatory sensilla, both in Aedes aegypti mosquitoes and in Drosophila. The detection of bitter molecules by gustatory neurons in Drosophila thus involves two main coding channels: one is specific, and involves gustatory cells dedicated to the detection of bitter molecules; the second one, less specific, is affecting cells which are dedicated to the detection of sugar molecules. Gustatory coding is thus a more complex phenomenon than previously thought on the basis of examining responses to single molecules, thus urging to study the responses of gustatory receptors to more complex and natural mixtures

    LPS perception through taste-induced reflex in Drosophila melanogaster

    Get PDF
    In flies, grooming serves several purposes, including protection against pathogens and parasites. Previously, we found Escherichia coli or lipopolysaccharides (LPS) can induce grooming behavior via activation of contact chemoreceptors on Drosophila wing. This suggested that specific taste receptors may contribute to this detection. In this study, we examined the perception of commercially available LPS on Drosophila wing chemoreceptors in grooming reflex. Behavioral tests conducted with bitter, sweet and salty gustation such as caffeine, sucrose and salt, using flies carrying a defect in one of their taste receptors related to the detection of bitter molecules (Gr66a, Gr33a), sugars (Gr5a, Gr64f), or salt (IR76b). LPS and tastants of each category were applied to wing sensilla of these taste defectflies and to wild-type Canton Special (CS) flies. Our results indicate that the grooming reflex induced by LPS requires a wide range of gustatory genes, and the inactivation of any of tested genes expressing cells causes a significant reduction of the behavior. This suggests that, while the grooming reflex is strongly regulated by cues perceived as aversive, other sapid cues traditionally related to sweet and salty tastes are also contributing to this behavior

    Gαo is required for L-canavanine detection in Drosophila.

    Get PDF
    Taste is an essential sense for the survival of most organisms. In insects, taste is particularly important as it allows to detect and avoid ingesting many plant toxins, such as L-canavanine. We previously showed that L-canavanine is toxic for Drosophila melanogaster and that flies are able to detect this toxin in the food. L-canavanine is a ligand of DmXR, a variant G-protein coupled receptor (GPCR) belonging to the metabotropic glutamate receptor subfamily that is expressed in bitter-sensitive taste neurons of Drosophila. To transduce the signal intracellularly, GPCR activate heterotrimeric G proteins constituted of α, β and γ subunits. The aim of this study was to identify which Gα protein was required for L-canavanine detection in Drosophila. By using a pharmacological approach, we first demonstrated that DmXR has the best coupling with Gαo protein subtype. Then, by using genetic, behavioral assays and electrophysiology, we found that Gαo47A is required in bitter-sensitive taste neurons for L-canavanine sensitivity. In conclusion, our study revealed that Gαo47A plays a crucial role in L-canavanine detection

    Immediate perception of a reward is distinct from the reward's long-term salience

    No full text
    WOS:000393392800001International audienceReward perception guides all aspects of animal behavior. However, the relationship between the perceived value of a reward, the latent value of a reward, and the behavioral response remains unclear. Here we report that, given a choice between two sweet and chemically similar sugarsL- and D-arabinoseDrosophila melanogaster prefers D- over L- arabinose, but forms long-term memories of L-arabinose more reliably. Behavioral assays indicate that L-arabinose-generated memories require sugar receptor Gr43a, and calcium imaging and electrophysiological recordings indicate that L- and D-arabinose differentially activate Gr43a-expressing neurons. We posit that the immediate valence of a reward is not always predictive of the long-term reinforcement value of that reward, and that a subset of sugar-sensing neurons may generate distinct representations of similar sugars, allowing for rapid assessment of the salient features of various sugar rewards and generation of reward-specific behaviors. However, how sensory neurons communicate information about L-arabinose quality and concentrationfeatures relevant for long-term memoryremains unknown

    Dual Mechanism for Bitter Avoidance in Drosophila

    No full text
    International audienceIn flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect L-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures

    PTX inhibition of Gαo47A in bitter-sensitive taste neurons highly reduces L-canavanine aversion and L-canavanine-induced nerve firings, but has no effect on caffeine aversion.

    No full text
    <p><b>A)</b> Two-choice feeding test experiments showing preference index for the blue solution of flies with different genotypes. Control indicates that no drug was added to the blue medium (white bars). Data obtained by using 30 mM L-canavanine in the blue medium are shown in black bars. The expression of a selective toxin (pertussis toxin, PTX) for Gαo47A in Gr66a-positive taste neurons (Gr66a-Gal4/+;UAS-PTX/+) highly reduces the aversion to L-canavanine compared to controls (Gr66a-Gal4/+ and UAS-PTX/+). Gr66a-Gal4/+;UAS-PTX/+ did not distinguish the control and the L-canavanine containing solutions (ns, p = 0.0526). Note that Gr66a-Gal4/+;UAS-PTX/+ flies are more sensitive to caffeine (grey bar) than the Gr66a-Gal4/+ and UAS-PTX/+ control lines (p<0.001). Error bars indicate SEM. Asterisks indicate significant differences by Unpaired Student's <i>t</i> test (ns: not significant, *** p<0.001). <b>B–C)</b> Electrophysiological recordings were performed from s6 sensilla on the proboscis of flies with different genotypes. The electrical activity of the taste neurons was recorded by capping taste sensillum with an electrode containing 1 mM KCl as an electrolyte and the stimulus (40 mM L-canavanine or 10 mM caffeine). <b>B)</b> Sample responses for 1 mM KCl, 40 mM L-canavanine (mentioned as L-cana) and 10 mM caffeine on Gr66a-Gal4,UAS-PTX, Gr66a-Gal4/+;UAS-PTX/+, UAS-RNAiGαo47A and Gr66a-Gal4/+;UAS-RNAiGαo47A/+ flies. <b>C)</b> Compared to control (white bars) and parental lines (light grey, dark grey and squared bars), Gr66a-Gal4/+;UAS-PTX/+ (black bars) and Gr66a-Gal4/+;UAS-RNAiGαo47A/+ (dotted bars) did not respond to 40 mM L-canavanine. Note that the response to 10 mM caffeine is not altered for all genotypes. The response was evaluated by counting the number of spikes elicited during the first second of the stimulation. N = 7–10 for each condition. Error bars indicate SEM. Asterisks indicate significant differences by Unpaired Student's <i>t</i> test (*** p<0.001).</p
    corecore