22 research outputs found
Fuzzy Logic Based Self-Adaptive Handover Algorithm for MobileWiMAX.
It is well known that WiMAX is a broadband technology that is capable of delivering triple play (voice, data, and video) services. However, mobility in WiMAX system is still a main issue when the mobile station (MS) moves across the base station (BS) coverage and be handed over between BSs. Among the challenging issues in mobile WiMAX handover are unnecessary handover, handover failure and handover delay, which may affect real-time applications. The conventional handover decision algorithm in mobile WiMAX is based on a single criterion, which usually uses the received signal strength indicator (RSSI) as an indicator, with the other fixed handover parameters such as handover threshold and handover margin. In this paper, a fuzzy logic based self-adaptive handover (FuzSAHO) algorithm is introduced. The proposed algorithm is derived from the self-adaptive handover parameters to overcome the mobile WiMAX ping-pong handover and handover delay issues. Hence, the proposed FuzSAHO is initiated to check whether a handover is necessary or not which depends on its fuzzy logic stage. The proposed FuzSAHO algorithm will first self-adapt the handover parameters based on a set of multiple criteria, which includes the RSSI and MS velocity. Then the handover decision will be executed according to the handover parameter values. Simulation results show that the proposed FuzSAHO algorithm reduces the number of ping-pong handover and its delay. When compared with RSSI based handover algorithm and mobility improved handover (MIHO) algorithm, respectively, FuzSAHO reduces the number of handovers by 12.5 and 7.5 %, respectively, when the MS velocity is <17 m/s. In term of handover delay, the proposed FuzSAHO algorithm shows an improvement of 27.8 and 8 % as compared to both conventional and MIHO algorithms, respectively. Thus, the proposed multi-criteria with fuzzy logic based self-adaptive handover algorithm called FuzSAHO, outperforms both conventional and MIHO handover algorithms
Phytol: A review of biomedical activities
© 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
This author accepted manuscript is made available following 12 month embargo from date of publication (Auguist 2018) in accordance with the publisher’s archiving policyPhytol (PYT) is a diterpene member of the long-chain unsaturated acyclic alcohols. PYT and some of its derivatives, including phytanic acid (PA), exert a wide range of biological effects. PYT is a valuable essential oil (EO) used as a fragrance and a potential candidate for a broad range of applications in the pharmaceutical and biotechnological industry. There is ample evidence that PA may play a crucial role in the development of pathophysiological states. Focusing on PYT and some of its most relevant derivatives, here we present a systematic review of reported biological activities, along with their underlying mechanism of action. Recent investigations with PYT demonstrated anxiolytic, metabolism-modulating, cytotoxic, antioxidant, autophagy- and apoptosis-inducing, antinociceptive, anti-inflammatory, immune-modulating, and antimicrobial effects. PPARs- and NF-κB-mediated activities are also discussed as mechanisms responsible for some of the bioactivities of PYT. The overall goal of this review is to discuss recent findings pertaining to PYT biological activities and its possible applications
Design and Development of a Power Operated Sunflower Thresher
Sunflower production is increasing in Bangladesh, but farmers face problems separating the seeds from the sunflower heads. Sunflowers are traditionally threshed by beating the heads manually with a stick. The goal of this experiment is to design and develop a motor-driven machine that separates the seeds from the sunflower. An orthographic projection was drawn using SolidWorks 2016 software. The sunflower threshing machine was then fabricated according to the drawing in the FMPE Divisional workshop using locally available materials in 2017-18. The developed sunflower threshing machine was modified in 2018-19. The improved model was further modified to reduce the overall dimensions while maintaining the same capacity of the machine. The number of threshing rollers was reduced from 5 to 4. A threshing fan has been added to the improved version to separate the dust from the grains. The capacity of the motorized sunflower thresher was 115 and 304% higher than that of the pedal thresher and manual threshing, respectively. The capacity of the thresher was varied with moisture content. The capacity of the thresher varied from 89 to 125 kg/h at moisture content from 31 to 62% (wb). [J Bangladesh Agril Univ 2022; 20(3.000): 289-294
Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis
Natural anti-inflammatory nutraceuticals may be useful in preventing rheumatoid arthritis from worsening. Resveratrol (RV) and chia seed oil, having antioxidant potential, can assist in avoiding oxidative stress-related disorders. This investigation developed and evaluated resveratrol-loaded chia seed oil-based nanoemulsion (NE) gel formulations through in vitro and in vivo studies. The physical stability and in vitro drug permeability of the chosen formulations (NE1 to NE10) were studied. The optimized RV-loaded nanoemulsion (NE2) had droplets with an average size of 37.48 nm that were homogeneous in shape and had a zeta potential of −18 mV. RV-NE2, with a permeability of 98.21 ± 4.32 µg/cm2/h, was gelled with 1% carbopol-940P. A 28-day anti-arthritic assessment (body weight, paw edema, and levels of pro-inflammatory mediators including TNF-α, IL-6, IL-1β, and COX-2) following topical administration of RV-NE2 gel showed significant reversal of arthritic symptoms in arthritic Wistar rats induced by Freund’s complete adjuvant injection. Therefore, RV-NE2 gel demonstrated the potential to achieve local therapeutic benefits in inflammatory arthritic conditions due to its increased topical bioavailability and balancing of pro-inflammatory mediators
Therapeutic Value of miRNAs in Coronary Artery Disease
Atherosclerotic ischemic coronary artery disease (CAD) is a significant community health challenge and the principal cause of morbidity and mortality in both developed and developing countries for all ethnic groups. The progressive chronic coronary atherosclerosis is the main underlying cause of CAD. Although enormous progress occurred in the last three decades in the management of cardiovascular diseases, the prevalence of CAD continues to increase worldwide, indicating the need for discovery of deeper molecular insights of CAD mechanisms, biomarkers, and innovative therapeutic targets. Recently, several research groups established that microRNAs essentially regulate various cardiovascular development and functions, and a deregulated cardiac enriched microRNA profile plays a vital role in the pathogenesis of CAD and its biological aging. Numerous studies established that over- or downregulation of a single miRNA gene by ago-miRNA or anti-miRNA is enough to modify the CAD disease process, significantly prevent age-dependent cardiac cell death, and markedly improve cardiac function. In the light of more recent experimental and clinical evidences, we briefly reviewed and discussed the involvement of miRNAs in CAD and their possible diagnostic/therapeutic values. Moreover, we also focused on the role of miRNAs in the initiation and progression of the atherosclerosis plaque as the strongest risk factor for CAD
Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis
Natural anti-inflammatory nutraceuticals may be useful in preventing rheumatoid arthritis from worsening. Resveratrol (RV) and chia seed oil, having antioxidant potential, can assist in avoiding oxidative stress-related disorders. This investigation developed and evaluated resveratrol-loaded chia seed oil-based nanoemulsion (NE) gel formulations through in vitro and in vivo studies. The physical stability and in vitro drug permeability of the chosen formulations (NE1 to NE10) were studied. The optimized RV-loaded nanoemulsion (NE2) had droplets with an average size of 37.48 nm that were homogeneous in shape and had a zeta potential of −18 mV. RV-NE2, with a permeability of 98.21 ± 4.32 µg/cm2/h, was gelled with 1% carbopol-940P. A 28-day anti-arthritic assessment (body weight, paw edema, and levels of pro-inflammatory mediators including TNF-α, IL-6, IL-1β, and COX-2) following topical administration of RV-NE2 gel showed significant reversal of arthritic symptoms in arthritic Wistar rats induced by Freund’s complete adjuvant injection. Therefore, RV-NE2 gel demonstrated the potential to achieve local therapeutic benefits in inflammatory arthritic conditions due to its increased topical bioavailability and balancing of pro-inflammatory mediators
Antiemetic activity of abietic acid possibly through the 5HT3 and muscarinic receptors interaction pathways
Abstract The present study was designed to evaluate the antiemetic activity of abietic acid (AA) using in vivo and in silico studies. To assess the effect, doses of 50 mg/kg b.w. copper sulfate (CuSO4⋅5H2O) were given orally to 2-day-old chicks. The test compound (AA) was given orally at two doses of 20 and 40 mg/kg b.w. On the other hand, aprepitant (16 mg/kg), domperidone (6 mg/kg), diphenhydramine (10 mg/kg), hyoscine (21 mg/kg), and ondansetron (5 mg/kg) were administered orally as positive controls (PCs). The vehicle was used as a control group. Combination therapies with the referral drugs were also given to three separate groups of animals to see the synergistic and antagonizing activity of the test compound. Molecular docking and visualization of ligand-receptor interaction were performed using different computational tools against various emesis-inducing receptors (D2, D3, 5HT3, H1, and M1–M5). Furthermore, the pharmacokinetics and toxicity properties of the selected ligands were predicted by using the SwissADME and Protox-II online servers. Findings indicated that AA dose-dependently enhances the latency of emetic retching and reduces the number of retching compared to the vehicle group. Among the different treatments, animals treated with AA (40 mg/kg) exhibited the highest latency (98 ± 2.44 s) and reduced the number of retching (11.66 ± 2.52 times) compared to the control groups. Additionally, the molecular docking study indicated that AA exhibits the highest binding affinity (− 10.2 kcal/mol) toward the M4 receptors and an elevated binding affinity toward the receptors 5HT3 (− 8.1 kcal/mol), M1 (− 7.7 kcal/mol), M2 (− 8.7 kcal/mol), and H1 (− 8.5 kcal/mol) than the referral ligands. Taken together, our study suggests that AA has potent antiemetic effects by interacting with the 5TH3 and muscarinic receptor interaction pathways. However, additional extensive pre-clinical and clinical studies are required to evaluate the efficacy and toxicity of AA
Toxicity assessment of SARS-CoV-2-derived peptides in combination with a mix of pollutants on zebrafish adults: A perspective study of behavioral, biometric, mutagenic, and biochemical toxicity
The dispersion of SARS-CoV-2 in aquatic environments via the discharge of domestic and hospital sewage has been confirmed in different locations. Thus, we aimed to evaluate the possible impacts of zebrafish (Danio rerio) exposure to SARS-CoV-2 peptide fragments (PSPD-2001, 2002, and 2003) alone and combined with a mix of emerging pollutants. Our data did not reveal the induction of behavioral, biometric, or mutagenic changes. But we noticed an organ-dependent biochemical response. While nitric oxide and malondialdehyde production in the brain, gills, and muscle did not differ between groups, superoxide dismutase activity was reduced in the “PSPD”, “Mix”, and “Mix+PSPD” groups. An increase in catalase activity and a reduction in DPPH radical scavenging activity were observed in the brains of animals exposed to the treatments. However, the “Mix+PSPD” group had a higher IBRv2 value, with NO levels (brain), the reduction of acetylcholinesterase activity (muscles), and the DPPH radical scavenging activity (brain and muscles), the most discriminant factors for this group. The principal component analysis (PCA) and hierarchical clustering analysis indicated a clear separation of the “Mix+PSPD” group from the others. Thus, we conclude that exposure to viral fragments, associated with the mix of pollutants, induced more significant toxicity in zebrafish adults than in others.Fil: Freitas, Ítalo Nascimento. Goiano Federal Institute; Brasil. Universidade Federal de Uberlândia; BrasilFil: Dourado, Amanda Vieira. Goiano Federal Institute; BrasilFil: Araújo, Amanda Pereira da Costa. Universidade Federal de Goiás; BrasilFil: Silva de Souza, Sindoval. Universidade Federal de Goiás; BrasilFil: Luz, Thiarlen Marinho da. Goiano Federal Institute; BrasilFil: Guimarães, Abraão Tiago Batista. Goiano Federal Institute; BrasilFil: Gomes, Alex Rodrigues. Universidade Federal de Uberlândia; Brasil. Goiano Federal Institute; BrasilFil: Islam, Abu Reza Md. Towfiqul. Begum Rokeya University; BangladeshFil: Rahman, Md. Mostafizur. Jahangirnagar University; BangladeshFil: Arias, Andres Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Mubarak Ali, Davoodbasha. Universiti Teknologi Brunei; BrunéiFil: Ragavendran, Chinnasamy. Saveetha Dental College And Hospitals; IndiaFil: Kamaraj, Chinnaperumal. Srm Institute Of Science And Technology; IndiaFil: Malafaia, Guilherme. Universidade Federal de Goiás; Brasil. Goiano Federal Institute; Brasil. Universidade Federal de Uberlândia; Brasi