9 research outputs found

    Inspired by Nature: Redox Modulators and Natural Nanoparticles

    Get PDF
    Numerous secondary metabolites found in edible plants modulate intracellular redox processes and are suggested to prevent certain diseases, especially in ageing organisms. Since such nutraceuticals provide the basis for new and innovative designer diets and therapies, extracting these substances and their potential from plants has become a focus of research, with nanotechnology and natural nanoparticles at the centre of some of these developments

    Synthesis, Structural Characterization, and Biological Activities of Organically Templated Cobalt Phosphite (H2DAB)[Co(H2PO3)4]·2H2O

    Get PDF
    A novel hybrid cobalt phosphite, (H2DAB)[Co(H2PO3 )4 ] 2H2O, was synthesized by using a slow evaporation method in the presence of cobalt nitrate, phosphorous acid, and 1,4-diaminobutane (DAB = 1,4-diaminobutane) as a structure-directing agent. Single-crystal X-ray diffraction analysis showed that the compound crystallizes in the triclinic system (space group P-1(n.2)) with the following unit cell parameters (Å, ◦ ) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5), and V = 447.33 (4) Å3 . The crystal structure is built up from corner-sharing [CoO6 ] octahedra, forming chains parallel to [001], which are interconnected by H2PO3 − pseudo-tetrahedral units. The diprotonated cations, residing between the parallel chains, interact with the inorganic moiety via hydrogen bonds, thus leading to the formation of the 3D crystal structure. The Fourier transform infrared spectrum showed characteristic bands corresponding to the phosphite group and the organic amine. The thermal behavior of the compound mainly consisted of the loss of its organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains at different concentrations, while less inhibitory activity was pronounced against Staphylococcus epidermidis and Saccharomyces cerevisiae, and in the case of multi-cellular organisms, no activity against the nematode model Steinernema feltiae was detected

    Synthesis, Structural Characterization, and Biological Activities of Organically Templated Cobalt Phosphite (C4N2H14)Co(H2PO3)4·2H2O

    Get PDF
    A novel hybrid phosphite [(C4N2H14)Co(H2PO3)4·2H2O] was synthesized with 1,4- diaminobutane (dabn) as a structure-directing agent using slow evaporation method. Single crystal X-ray diffraction analysis showed that it crystallizes in the triclinic system (S.G: P-1, #2) with the following unit cell parameters (Å, °) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5). The crystal structure was built up from corner-sharing [CoO6]-octahedrons, forming chains parallel to [001], which are interconnected by H2PO3 pseudo-pyramid units. The diprotonated 1,4-diaminobutane molecules, residing between the parallel chains, interacted with the inorganic moiety via hydrogen bonds leading thus to the formation of the 3D crystal structure. The Fourier transform infrared result exhibited characteristic bands corresponding to the phosphite group and the organic molecule. The thermal decomposition of the compound consists mainly of the loss of the organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains in all used concentrations, while less activity was pronounced when tested against Staphylococcus epidermidis and Saccharomyces cerevisiae, while there was no activity against the nematode model Steinernema feltiae

    Milling the Mistletoe: Nanotechnological Conversion of African Mistletoe (Loranthus micranthus) Intoantimicrobial Materials

    Get PDF
    Nanosizing represents a straight forward technique to unlock the biological activity of complex plant materials. The aim of this study was to develop herbal nanoparticles with medicinal value from dried leaves and stems of Loranthus micranthus with the aid of ball-milling, high speed stirring, and high-pressure homogenization techniques. The milled nanoparticles were characterized using laser diffraction analysis, photon correlation spectroscopy analysis, and light microscopy. The average size of leaf nanoparticles was around 245 nm and that of stem nanoparticles was around 180 nm. The nanoparticles were tested for their antimicrobial and nematicidal properties against a Gram-negative bacterium Escherichia coli, a Gram-positive bacterium Staphylococcus carnosus, fungi Candida albicans and Saccharomyces cerevisiae, and a nematode Steinernemafeltiae. The results show significant activities for both leaf and (particularly) stem nanoparticles of Loranthus micranthus on all organisms tested, even at a particle concentration as low as 0.01% (w/w). The results observed indicate that nanoparticles (especially of the stem) of Loranthus micranthus could serve as novel antimicrobial agents with wide-ranging biomedical applications

    Inspired by Nature: Redox Modulators and Natural Nanoparticles

    Get PDF
    Numerous secondary metabolites found in edible plants modulate intracellular redox processes and are suggested to prevent certain diseases, especially in ageing organisms. Since such nutraceuticals provide the basis for new and innovative designer diets and therapies, extracting these substances and their potential from plants has become a focus of research, with nanotechnology and natural nanoparticles at the centre of some of these developments

    Synthesis, Structural Characterization, and Biological Activities of Organically Templated Cobalt Phosphite (H<sub>2</sub>DAB)[Co(H<sub>2</sub>PO<sub>3</sub>)<sub>4</sub>]·2H<sub>2</sub>O

    No full text
    A novel hybrid cobalt phosphite, (H2DAB)[Co(H2PO3)4] 2H2O, was synthesized by using a slow evaporation method in the presence of cobalt nitrate, phosphorous acid, and 1,4-diaminobutane (DAB = 1,4-diaminobutane) as a structure-directing agent. Single-crystal X-ray diffraction analysis showed that the compound crystallizes in the triclinic system (space group P-1(n.2)) with the following unit cell parameters (Å, °) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5), and V = 447.33 (4) Å3. The crystal structure is built up from corner-sharing [CoO6] octahedra, forming chains parallel to [001], which are interconnected by H2PO3− pseudo-tetrahedral units. The diprotonated cations, residing between the parallel chains, interact with the inorganic moiety via hydrogen bonds, thus leading to the formation of the 3D crystal structure. The Fourier transform infrared spectrum showed characteristic bands corresponding to the phosphite group and the organic amine. The thermal behavior of the compound mainly consisted of the loss of its organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains at different concentrations, while less inhibitory activity was pronounced against Staphylococcus epidermidis and Saccharomyces cerevisiae, and in the case of multi-cellular organisms, no activity against the nematode model Steinernema feltiae was detected

    Synthesis, Structural Characterization, and Biological Activities of Organically Templated Cobalt Phosphite (H2DAB)[Co(H2PO3)4]&middot;2H2O

    No full text
    A novel hybrid cobalt phosphite, (H2DAB)[Co(H2PO3)4] 2H2O, was synthesized by using a slow evaporation method in the presence of cobalt nitrate, phosphorous acid, and 1,4-diaminobutane (DAB = 1,4-diaminobutane) as a structure-directing agent. Single-crystal X-ray diffraction analysis showed that the compound crystallizes in the triclinic system (space group P-1(n.2)) with the following unit cell parameters (&Aring;, &deg;) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), &alpha; = 88.001 (4), &beta; = 88.707 (5), &gamma; = 85.126 (5), and V = 447.33 (4) &Aring;3. The crystal structure is built up from corner-sharing [CoO6] octahedra, forming chains parallel to [001], which are interconnected by H2PO3&minus; pseudo-tetrahedral units. The diprotonated cations, residing between the parallel chains, interact with the inorganic moiety via hydrogen bonds, thus leading to the formation of the 3D crystal structure. The Fourier transform infrared spectrum showed characteristic bands corresponding to the phosphite group and the organic amine. The thermal behavior of the compound mainly consisted of the loss of its organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains at different concentrations, while less inhibitory activity was pronounced against Staphylococcus epidermidis and Saccharomyces cerevisiae, and in the case of multi-cellular organisms, no activity against the nematode model Steinernema feltiae was detected

    Selenium Donors at the Junction of Inflammatory Diseases

    No full text
    corecore