12 research outputs found

    CRISPR/Cas9 ADCY7 Knockout Stimulates the Insulin Secretion Pathway Leading to Excessive Insulin Secretion

    Get PDF
    AimDespite the enormous efforts to understand Congenital hyperinsulinism (CHI), up to 50% of the patients are genetically unexplained. We aimed to functionally characterize a novel candidate gene in CHI.PatientA 4-month-old boy presented severe hyperinsulinemic hypoglycemia. A routine CHI genetic panel was negative.MethodsA trio-based whole-exome sequencing (WES) was performed. Gene knockout in the RIN-m cell line was established by CRISPR/Cas9. Gene expression was performed using real-time PCR.ResultsHyperinsulinemic hypoglycemia with diffuse beta-cell involvement was demonstrated in the patient, who was diazoxide-responsive. By WES, compound heterozygous variants were identified in the adenylyl cyclase 7, ADCY7 gene p.(Asp439Glu) and p.(Gly1045Arg). ADCY7 is calcium-sensitive, expressed in beta-cells and converts ATP to cAMP. The variants located in the cytoplasmic domains C1 and C2 in a highly conserved and functional amino acid region. RIN-m(-/-Adcy7) cells showed a significant increase in insulin secretion reaching 54% at low, and 49% at high glucose concentrations, compared to wild-type. In genetic expression analysis Adcy7 loss of function led to a 34.1-fold to 362.8-fold increase in mRNA levels of the insulin regulator genes Ins1 and Ins2 (p ≀ 0.0002), as well as increased glucose uptake and sensing indicated by higher mRNA levels of Scl2a2 and Gck via upregulation of Pdx1, and Foxa2 leading to the activation of the glucose stimulated-insulin secretion (GSIS) pathway.ConclusionThis study identified a novel candidate gene, ADCY7, to cause CHI via activation of the GSIS pathway

    <i>PHKA2</i> variants expand the phenotype of phosphorylase B kinase deficiency to include patients with ketotic hypoglycemia only

    Get PDF
    Idiopathic ketotic hypoglycemia (IKH) is a diagnosis of exclusion with glycogen storage diseases (GSDs) as a differential diagnosis. GSD IXa presents with ketotic hypoglycemia (KH), hepatomegaly, and growth retardation due to PHKA2 variants. In our multicenter study, 12 children from eight families were diagnosed or suspected of IKH. Whole‐exome sequencing or targeted next‐generation sequencing panels were performed. We identified two known and three novel (likely) pathogenic PHKA2 variants, such as p.(Pro869Arg), p.(Pro498Leu), p.(Arg2Gly), p.(Arg860Trp), and p.(Val135Leu), respectively. Erythrocyte phosphorylase kinase activity in three patients with the novel variants p.(Arg2Gly) and p.(Arg860Trp) were 15%–20% of mean normal. One patient had short stature and intermittent mildly elevated aspartate aminotransferase, but no hepatomegaly. Family testing identified two asymptomatic children and 18 adult family members with one of the PHKA2 variants, of which 10 had KH symptoms in childhood and 8 had mild symptoms in adulthood. Our study expands the classical GSD IXa phenotype of PHKA2 missense variants to a continuum from seemingly asymptomatic carriers, over KH‐only with phosphorylase B kinase deficiency, to more or less complete classical GSD IXa. In contrast to typical IKH, which is confined to young children, KH may persist into adulthood in the KH‐only phenotype of PHKA2

    CRISPR/Cas9 ADCY7 Knockout Stimulates the Insulin Secretion Pathway Leading to Excessive Insulin Secretion

    No full text
    Aim: Despite the enormous efforts to understand Congenital hyperinsulinism (CHI), up to 50% of the patients are genetically unexplained. We aimed to functionally characterize a novel candidate gene in CHI. Patient: A 4-month-old boy presented severe hyperinsulinemic hypoglycemia. A routine CHI genetic panel was negative. Methods: A trio-based whole-exome sequencing (WES) was performed. Gene knockout in the RIN-m cell line was established by CRISPR/Cas9. Gene expression was performed using real-time PCR. Results: Hyperinsulinemic hypoglycemia with diffuse beta-cell involvement was demonstrated in the patient, who was diazoxide-responsive. By WES, compound heterozygous variants were identified in the adenylyl cyclase 7, ADCY7 gene p.(Asp439Glu) and p.(Gly1045Arg). ADCY7 is calcium-sensitive, expressed in beta-cells and converts ATP to cAMP. The variants located in the cytoplasmic domains C1 and C2 in a highly conserved and functional amino acid region. RIN-m(-/-Adcy7) cells showed a significant increase in insulin secretion reaching 54% at low, and 49% at high glucose concentrations, compared to wild-type. In genetic expression analysis Adcy7 loss of function led to a 34.1-fold to 362.8-fold increase in mRNA levels of the insulin regulator genes Ins1 and Ins2 (p ≀ 0.0002), as well as increased glucose uptake and sensing indicated by higher mRNA levels of Scl2a2 and Gck via upregulation of Pdx1, and Foxa2 leading to the activation of the glucose stimulated-insulin secretion (GSIS) pathway. Conclusion: This study identified a novel candidate gene, ADCY7, to cause CHI via activation of the GSIS pathway

    Exome sequencing revealed DNA variants in NCOR1, IGF2BP1, SGLT2 and NEK11 as potential novel causes of ketotic hypoglycemia in children

    No full text
    Unexplained or idiopathic ketotic hypoglycemia (KH) is the most common type of hypoglycemia in children. The diagnosis is based on the exclusion of routine hormonal and metabolic causes of hypoglycemia. We aimed to identify novel genes that cause KH, as this may lead to a more targeted treatment. Deep phenotyping of ten preschool age at onset KH patients (boys, n = 5; girls, n = 5) was performed followed by trio exome sequencing and comprehensive bioinformatics analysis. Data analysis revealed four novel candidate genes: (1) NCOR1 in a patient with KH, iron deficiency and loose stools; (2) IGF2BP1 in a proband with KH, short stature and delayed bone age; (3) SLC5A2 in a proband with KH, intermittent glucosuria and extremely elevated p-GLP-1; and (4) NEK11 in a proband with ketotic hypoglycemia and liver affliction. These genes are associated with different metabolic processes, such as gluconeogenesis, translational regulation, and glucose transport. In conclusion, WES identified DNA variants in four different genes as potential novel causes of IKH, suggesting that IKH is a heterogeneous disorder that can be split into several novel diseases: NCOR1-KH, IGF2BP1-KH, SGLT2-KH or familial renal glucosuria KH, and NEK11-KH. Precision medicine treatment based on exome sequencing may lead to advances in the management of IKH

    A homozygous nonsense mutation in DCBLD2 is a candidate cause of developmental delay, dysmorphic features and restrictive cardiomyopathy

    No full text
    Abstract DCBLD2 encodes discodin, CUB and LCCL domain-containing protein 2, a type-I transmembrane receptor that is involved in intracellular receptor signalling pathways and the regulation of cell growth. In this report, we describe a 5-year-old female who presented severe clinical features, including restrictive cardiomyopathy, developmental delay, spasticity and dysmorphic features. Trio-whole-exome sequencing and segregation analysis were performed to identify the genetic cause of the disease within the family. A novel homozygous nonsense variant in the DCBLD2 gene (c.80G > A, p.W27*) was identified as the most likely cause of the patient’s phenotype. This nonsense variant falls in the extracellular N-terminus of DCBLD2 and thus might affect proper protein function of the transmembrane receptor. A number of in vitro investigations were performed on the proband’s skin fibroblasts compared to normal fibroblasts, which allowed a comprehensive assessment resulting in the functional characterization of the identified DCBLD2 nonsense variant in different cellular processes. Our data propose a significant association between the identified variant and the observed reduction in cell proliferation, cell cycle progression, intracellular ROS, and Ca2 + levels, which would likely explain the phenotypic presentation of the patient as associated with lethal restrictive cardiomyopathy

    Scanning electron microscopy (SEM) images of <i>S. wadsworthensis</i> showing different morphologies for this organism.

    No full text
    <p>Small and large, filamentous and helical bacteria forms were observed. A) <i>S. wadsworthensis</i> cells formed as a lattice B) Different <i>Sutterella</i> cell morphologies C) Filamentous bacterial form D) Helical bacterial form.</p

    Phylogenetic tree constructed using nearly full-length (∌1400 bp) sequences of the 16S rRNA gene of <i>S. wadsworthensis</i> strains from UC and controls alongside other <i>Sutterella</i> sequences available in GenBank.

    No full text
    <p>The evolutionary history was inferred using the Neighbor-Joining method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The <i>S. wadsworthenis</i> isolates from IBD cases are marked in red and those from controls are marked in blue.</p

    Amplification of <i>S. wadsworthensis</i> DNA from reference and clinical strains using the SW-F and SW-R primers.

    No full text
    <p>The assay amplified a product of ≈555 bp in size. Lane 1:100 bp marker, Lane 2: negative control (no DNA), Lane 3: <i>S. wadsworthensis</i> DSM 14016, Lane 4 – Lane 25: <i>S. wadsworthensis</i> isolate SW1, SW2, SW4, SW5, SW6, SW7, SW8, SW9, SW10, SW11, SW12, SW13, SW14, SW15, SW16, SW17, SW18, SW19, SW20, SW21, SW22, SW23, Lane 26:100 bp marker.</p

    Mass spectra obtained for <i>S. wadsworthensis</i> strains.

    No full text
    <p>(A) Spectra obtained for 6 <i>S. wadsworthensis</i> strains: <i>S. wadsworthensis</i> type strain, SW1, SW4, SW5, SW6 and SW7. All of the <i>S. wadsworthensis</i> strains conform to a common pattern. a.u. arbitary unit; m/z, mass-to-charge ratio; Da, Daltons; (B) Overlaid spectra of five <i>S. wadsworthensis</i> strains overlaid. This is a close-up of the mass spectra from 8,700 Da to 10,500 Da. It shows how closely each <i>S. wadsworthensis</i> mass spectrum, aside from intensity, matches the others. a.u., arbitary unit; m/z, mass-to-charge ratio; Da, daltons.</p
    corecore