33 research outputs found

    Stimulated urine C-peptide creatinine ratio vs serum C-peptide level for monitoring of β-cell function in the first year after diagnosis of Type 1 diabetes

    Get PDF
    Aims To determine if urine C-peptide/creatinine ratio is a useful tool for monitoring b-cell function in new-onset Type1 diabetes.Methods Data were obtained from a prospective immunomodulation study in people with Type 1 diabetes ≤ 3 monthsfrom diagnosis, with a standard mixed-meal tolerance test and measurement of urine C-peptide/creatinine ratio carriedout at 0, 3, 6, 9 and 12 months. The change in the insulin-dose-adjusted HbA1clevel was also correlated with the changein serum/urine C-peptide level during the 12-month follow-up period.Results A significant reduction in urine C-peptide/creatinine ratio, measured after a mixed-meal, was reached at9 months (-45.4%), whilst the reduction in stimulated serum C-peptide level reached significance after 3 months(-54.7%) in placebo-treated participants. Neither change in stimulated serum C-peptide nor change in urine C-peptidelevel correlated with each other, and nor did change in insulin-dose-adjusted HbA1clevel in the first 6 months, but allmeasures correlated significantly in the second half of the 12-month follow-up period.Conclusion Mixed-meal-stimulated urine C-peptide/creatinine ratio was similar to, although less sensitive than,stimulated serum C-peptide level in monitoring b-cell function during the first year after diagnosis. Because the former issignificantly less invasive, it warrants inclusion in further studies in Type 1 diabetes and may represent an attractivealternative outcome measure in cohort studies and in children

    Prescribing costs of hypoglycaemic agents and associations with metabolic control in Wales; a national analysis of primary care data

    Get PDF
    Aims: There has been a dramatic increase in hypoglycaemic agent expenditure. We assessed the variability in prescribing costs at the practice level and the relationship between expenditure and the proportion of patients achieving target glycaemic control. Methods: We utilized national prescribing data from 406 general practices in Wales. This was compared against glycaemic control (percentage of patients achieving a HbA1c level < 59 mmol/mol in the preceding 12 months). Analyses were adjusted for the number of patients with diabetes in each general practice and the Welsh Index of Multiple Deprivation. Results: There was considerable heterogeneity in hypoglycaemic agent spend per patient with diabetes, Median = £289 (IQR 247–343) range £31.1–£1713. Higher total expenditure was not associated with improved glycaemic control B(std) = −0.01 (95%CI –0.01, 0.002) p = 0.13. High‐spend practices spent more on SGLT2 inhibitors (16 vs. 9% p < 0.001) and GLP‐1 agonists (13 vs. 11% p < 0.001) and less on insulin (34 vs. 42% p < 0.001), biguanides (9 vs. 11% p = 0.001) and sulphonylureas (2 vs. 3% p < 0.001) than low spend practices. There were no differences in the pattern of drug prescribing between high spend practices with better glycaemic control (mean 68% of patients HbA1c <59 mmol/mol) and those with less good metabolic control (mean 58% of patients HbA1c <59 mmol/mol). Conclusions: Spend on hypoglycaemic agents is highly variable between practices and increased expenditure per patient is not associated with better glycaemic control. Whilst newer, more expensive agents have additional benefits, in individuals where these advantages are more marginal widespread use of these agents has important cost implications

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Phenotypic Analysis of Human Lymph Nodes in Subjects With New-Onset Type 1 Diabetes and Healthy Individuals by Flow Cytometry.

    Get PDF
    Background: Ultrasound guided sampling of human lymph node (LN) combined with advanced flow cytometry allows phenotypic analysis of multiple immune cell subsets. These may provide insights into immune processes and responses to immunotherapies not apparent from analysis of the blood. Methods: Ultrasound guided inguinal LN samples were obtained by both fine needle aspiration (FNA) and core needle biopsy in 10 adults within 8 weeks of diagnosis of type 1 diabetes (T1D) and 12 age-matched healthy controls at two study centers. Peripheral blood mononuclear cells (PBMC) were obtained on the same occasion. Samples were transported same day to the central laboratory and analyzed by multicolour flow cytometry. Results: LN sampling was well-tolerated and yielded sufficient cells for analysis in 95% of cases. We confirmed the segregation of CD69+ cells into LN and the predominance of CD8+ Temra cells in blood previously reported. In addition, we demonstrated clear enrichment of CD8+ naïve, FOXP3+ Treg, class-switched B cells, CD56bright NK cells and plasmacytoid dendritic cells (DC) in LNs as well as CD4+ T cells of the Th2 phenotype and those expressing Helios and Ki67. Conventional NK cells were virtually absent from LNs as were Th22 and Th1Th17 cells. Paired correlation analysis of blood and LN in the same individuals indicated that for many cell subsets, especially those associated with activation: such as CD25+ and proliferating (Ki67+) T cells, activated follicular helper T cells and class-switched B cells, levels in the LN compartment could not be predicted by analysis of blood. We also observed an increase in Th1-like Treg and less proliferating (Ki67+) CD4+ T cells in LN from T1D compared to control LNs, changes which were not reflected in the blood. Conclusions: LN sampling in humans is well-tolerated. We provide the first detailed "roadmap" comparing immune subsets in LN vs. blood emphasizing a role for differentiated effector T cells in the blood and T cell regulation, B cell activation and memory in the LN. For many subsets, frequencies in blood, did not correlate with LN, suggesting that LN sampling would be valuable for monitoring immuno-therapies where these subsets may be impacted

    Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes

    Get PDF
    Immunotherapy using short immunogenic peptides of disease-related autoantigens restores immune tolerance in preclinical disease models. We studied safety and mechanistic effects of injecting human leukocyte antigen-DR4(DRB1*0401)-restricted immunodominant proinsulin peptide intradermally every 2 or 4 weeks for 6 months in newly diagnosed type 1 diabetes patients. Treatment was well tolerated with no systemic or local hypersensitivity. Placebo subjects showed a significant decline in stimulated C-peptide (measuring insulin reserve) at 3, 6, 9, and 12 months versus baseline, whereas no significant change was seen in the 4-weekly peptide group at these time points or the 2-weekly group at 3, 6, and 9 months. The placebo group's daily insulin use increased by 50% over 12 months but remained unchanged in the intervention groups. C-peptide retention in treated subjects was associated with proinsulin-stimulated interleukin-10 production, increased FoxP3 expression by regulatory T cells, low baseline levels of activated β cell-specific CD8 T cells, and favorable β cell stress markers (proinsulin/C-peptide ratio). Thus, proinsulin peptide immunotherapy is safe, does not accelerate decline in β cell function, and is associated with antigen-specific and nonspecific immune modulation.</p

    Safety of the use of gold nanoparticles conjugated with proinsulin peptide and administered by hollow microneedles as an immunotherapy in Type 1 diabetes

    Get PDF
    Antigen-specific immunotherapy is immunomodulatory strategy for autoimmune diseases, such as Type 1 diabetes, in which patients are treated with autoantigens to promote immune tolerance, stop autoimmune beta-cell destruction and prevent permanent dependence on exogenous insulin. In this study, human proinsulin peptide C19-A3 (known for its positive safety profile) was conjugated to ultrasmall gold nanoparticles (GNP), an attractive drug delivery platform due to the potential anti-inflammatory properties of gold. We hypothesised that microneedle intradermal delivery of C19-A3 GNP may improve peptide pharmacokinetics and induce tolerogenic immunomodulation and proceeded to evaluate its safety and feasibility in a first-in-human trial. Allowing for the limitation of the small number of participants, intradermal administration of C19-A3 GNP appears safe and well-tolerated in participants with Type 1 diabetes. The associated prolonged skin retention of C19-A3 GNP after intradermal administration offers a number of possibilities to enhance its tolerogenic potential, which should be explored in future studies

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    BACKGROUND: The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. METHODS: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. FINDINGS: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). INTERPRETATION: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. FUNDING: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Effects of empagliflozin on progression of chronic kidney disease: a prespecified secondary analysis from the empa-kidney trial

    Get PDF
    Background: Sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce progression of chronic kidney disease and the risk of cardiovascular morbidity and mortality in a wide range of patients. However, their effects on kidney disease progression in some patients with chronic kidney disease are unclear because few clinical kidney outcomes occurred among such patients in the completed trials. In particular, some guidelines stratify their level of recommendation about who should be treated with SGLT2 inhibitors based on diabetes status and albuminuria. We aimed to assess the effects of empagliflozin on progression of chronic kidney disease both overall and among specific types of participants in the EMPA-KIDNEY trial. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA), and included individuals aged 18 years or older with an estimated glomerular filtration rate (eGFR) of 20 to less than 45 mL/min per 1·73 m2, or with an eGFR of 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher. We explored the effects of 10 mg oral empagliflozin once daily versus placebo on the annualised rate of change in estimated glomerular filtration rate (eGFR slope), a tertiary outcome. We studied the acute slope (from randomisation to 2 months) and chronic slope (from 2 months onwards) separately, using shared parameter models to estimate the latter. Analyses were done in all randomly assigned participants by intention to treat. EMPA-KIDNEY is registered at ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and then followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroups of eGFR included 2282 (34·5%) participants with an eGFR of less than 30 mL/min per 1·73 m2, 2928 (44·3%) with an eGFR of 30 to less than 45 mL/min per 1·73 m2, and 1399 (21·2%) with an eGFR 45 mL/min per 1·73 m2 or higher. Prespecified subgroups of uACR included 1328 (20·1%) with a uACR of less than 30 mg/g, 1864 (28·2%) with a uACR of 30 to 300 mg/g, and 3417 (51·7%) with a uACR of more than 300 mg/g. Overall, allocation to empagliflozin caused an acute 2·12 mL/min per 1·73 m2 (95% CI 1·83-2·41) reduction in eGFR, equivalent to a 6% (5-6) dip in the first 2 months. After this, it halved the chronic slope from -2·75 to -1·37 mL/min per 1·73 m2 per year (relative difference 50%, 95% CI 42-58). The absolute and relative benefits of empagliflozin on the magnitude of the chronic slope varied significantly depending on diabetes status and baseline levels of eGFR and uACR. In particular, the absolute difference in chronic slopes was lower in patients with lower baseline uACR, but because this group progressed more slowly than those with higher uACR, this translated to a larger relative difference in chronic slopes in this group (86% [36-136] reduction in the chronic slope among those with baseline uACR &lt;30 mg/g compared with a 29% [19-38] reduction for those with baseline uACR ≥2000 mg/g; ptrend&lt;0·0001). Interpretation: Empagliflozin slowed the rate of progression of chronic kidney disease among all types of participant in the EMPA-KIDNEY trial, including those with little albuminuria. Albuminuria alone should not be used to determine whether to treat with an SGLT2 inhibitor. Funding: Boehringer Ingelheim and Eli Lilly

    Effects of empagliflozin on progression of chronic kidney disease: a prespecified secondary analysis from the empa-kidney trial

    Get PDF
    BACKGROUND: Sodium–glucose co-transporter-2 (SGLT2) inhibitors reduce progression of chronic kidney disease and the risk of cardiovascular morbidity and mortality in a wide range of patients. However, their effects on kidney disease progression in some patients with chronic kidney disease are unclear because few clinical kidney outcomes occurred among such patients in the completed trials. In particular, some guidelines stratify their level of recommendation about who should be treated with SGLT2 inhibitors based on diabetes status and albuminuria. We aimed to assess the effects of empagliflozin on progression of chronic kidney disease both overall and among specific types of participants in the EMPA-KIDNEY trial. METHODS: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA), and included individuals aged 18 years or older with an estimated glomerular filtration rate (eGFR) of 20 to less than 45 mL/min per 1·73 m2, or with an eGFR of 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher. We explored the effects of 10 mg oral empagliflozin once daily versus placebo on the annualised rate of change in estimated glomerular filtration rate (eGFR slope), a tertiary outcome. We studied the acute slope (from randomisation to 2 months) and chronic slope (from 2 months onwards) separately, using shared parameter models to estimate the latter. Analyses were done in all randomly assigned participants by intention to treat. EMPA-KIDNEY is registered at ClinicalTrials.gov, NCT03594110. FINDINGS: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and then followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroups of eGFR included 2282 (34·5%) participants with an eGFR of less than 30 mL/min per 1·73 m2, 2928 (44·3%) with an eGFR of 30 to less than 45 mL/min per 1·73 m2, and 1399 (21·2%) with an eGFR 45 mL/min per 1·73 m2 or higher. Prespecified subgroups of uACR included 1328 (20·1%) with a uACR of less than 30 mg/g, 1864 (28·2%) with a uACR of 30 to 300 mg/g, and 3417 (51·7%) with a uACR of more than 300 mg/g. Overall, allocation to empagliflozin caused an acute 2·12 mL/min per 1·73 m2 (95% CI 1·83–2·41) reduction in eGFR, equivalent to a 6% (5–6) dip in the first 2 months. After this, it halved the chronic slope from –2·75 to –1·37 mL/min per 1·73 m2 per year (relative difference 50%, 95% CI 42–58). The absolute and relative benefits of empagliflozin on the magnitude of the chronic slope varied significantly depending on diabetes status and baseline levels of eGFR and uACR. In particular, the absolute difference in chronic slopes was lower in patients with lower baseline uACR, but because this group progressed more slowly than those with higher uACR, this translated to a larger relative difference in chronic slopes in this group (86% [36–136] reduction in the chronic slope among those with baseline uACR <30 mg/g compared with a 29% [19–38] reduction for those with baseline uACR ≥2000 mg/g; ptrend<0·0001). INTERPRETATION: Empagliflozin slowed the rate of progression of chronic kidney disease among all types of participant in the EMPA-KIDNEY trial, including those with little albuminuria. Albuminuria alone should not be used to determine whether to treat with an SGLT2 inhibitor. FUNDING: Boehringer Ingelheim and Eli Lilly

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all &gt;0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
    corecore