78 research outputs found

    Adaptive micro-optical phase modulators based on liquid crystal technology

    Get PDF
    Mención Internacional en el título de doctorThis thesis began with the project “Advanced Devices of Liquid Crystal and Electroluminescent Organic Diodes. Hybrid Applications for 3D Vision” funded by the Spanish government. The goal of this project was the development of optical devices to achieve 3D vision in portable devices without glasses or external elements. In order to achieve the goals of this project, solutions based on liquid crystal are considered. Specifically, adaptive micro-optical phase modulators based on liquid crystal technology are researched in depth. The gradient of the refractive index varies spatially the phase delay experienced by an impinging wavefront of a light beam. By using this effect, any refractive optical element may be reproduced with the proper voltage gradient applied to the sample. This is the main operating principle of the micro-optical phase modulators proposed in this thesis. As original contribution of this thesis, a novel algorithm to solve the position of a nematic liquid crystal molecular director is proposed. Once the liquid crystal is completely characterized, the developing of a specific model to know the electro-optic response of the micro-optical phase modulators is also relevant. Another original contribution is a novel equivalent electric circuit for modeling liquid crystal microlenses. An interesting feature of the model is that it provides an analytical solution for microlenses with modal and hole-patterned electrode schemes, by using a simple software tool. The required driving scheme (modal or hole-patterned) can be predicted. These theories have been validated by experimental results. For more complex devices, the equations are solved by Finite Element Method. A new manufacturing protocol is proposed to make the first set of modal microlens arrays. As a first step simple devices (monopixel cells) are fabricated in order to do a complete study of the liquid crystal electro-optical behavior. The characterization of the liquid crystal electro-optical parameters is determinant in order to design more complex devices. Refractive index and permittivity are the most important features considered. These parameters have been characterized to validate the proposed theoretical modelling of the liquid crystal molecular position. These devices have required special fabrication processes as well as a special characterization set-up especially in terms of size resolution or arrangement complexity. A custom micropositioner is developed and control software is programmed in relation to these tasks. The software automates the characterization process giving directly measured results of: phase modulation, focal distance, thickness or aberrations. These results have made it possible to validate experimentally the proposed electrical modeling for micro-optical devices. Demonstration of the viability of the liquid crystal lenticular technology has been carried out for an autostereoscopic application. This scheme provides the observer with the option of changing between horizontal and vertical views through his portable autostereoscopic display. Finally, last research contributions of this work of thesis have taken advantage of the deep knowledge of the electro-optical properties of lenticular devices for autostereoscopic applications, to guide the design of refined micro-optical phase modulators. Adaptive axicons and optical vortices are specially emphasized because their relevance from both, the scientific and technological point of view.Esta tesis se inició con el proyecto de investigación “Dispositivos avanzados de cristal líquido y diodos orgánicos electroluminiscentes. Aplicaciones híbridas para visión 3D”, financiado por el gobierno español. El objetivo de este proyecto consistía en el desarrollo de dispositivos ópticos para lograr visión 3D en dispositivos portátiles sin necesidad de gafas o elementos externos. Con el fin de alcanzar los objetivos de este proyecto, se consideran soluciones basadas en cristal líquido. En concreto, moduladores adaptativos de fase micro-ópticos basados en tecnología de cristal líquido. El gradiente del índice de refracción varía espacialmente el retardo de fase experimentado por un frente de onda incidente. Mediante el uso de este efecto, cualquier elemento óptico refractivo puede ser reproducido mediante un gradiente de tensión adecuado aplicado a la muestra. Este es el principio de funcionamiento de los moduladores de fase micro-ópticos propuestos en esta tesis. Como aportación original de esta tesis, se propone un nuevo algoritmo para resolver el director molecular de un cristal líquido nemático. Una vez que el cristal líquido está completamente caracterizado, es necesario el desarrollo de un modelo específico para saber la respuesta electro-óptica de los moduladores de fase micro-ópticos. Otra contribución original, consiste en un circuito eléctrico equivalente para el modelado de microlentes de cristal líquido. Una característica interesante del modelo es que proporciona una solución analítica para microlentes con esquemas de electrodos modales y “hole patterned”. Se puede predecir la topología necesaria en función de los parámetros de construcción. Estas teorías han sido validadas por resultados experimentales. Para los dispositivos más complejos, las ecuaciones se resuelven por el método de elementos finitos. Se propone un nuevo protocolo de fabricación para hacer microlentes modales. Como primer paso se fabrican dispositivos sencillos (células monopixel) con el fin de hacer un estudio completo del comportamiento electro-óptico del cristal líquido. La caracterización de los parámetros electro-ópticos de cristal líquido es determinante para diseñar dispositivos más complejos. El índice de refracción y la permitividad son las características más importantes. Estos parámetros se han caracterizado para validar el modelo teórico de la posición molecular de cristal líquido. Estos dispositivos han requerido procesos de fabricación complejos, así como montajes de caracterización determinados. Se ha desarrollado un microposicionador y un software de control. El software automatiza el proceso de caracterización dando resultados de: modulación de fase, distancia focal, grosor o aberraciones. Estos resultados han permitido validar experimentalmente el modelado eléctrico propuesto para dispositivos micro-ópticos. La demostración de la viabilidad de la tecnología propuesta se ha llevado a cabo mediante un dispositivo autoestereoscópico. Este dispositivo ofrece al observador la opción de cambiar entre vistas horizontal y vertical a través de su pantalla autoestereoscópica portátil. Finalmente, los últimos aportes de investigación de este trabajo de tesis se han aprovechado del profundo conocimiento de las propiedades electro-ópticas de los dispositivos lenticulares para aplicaciones autoestereoscópicas. Se pueden destacar los axicones adaptativos y vórtices ópticos por su relevancia tanto desde el punto de vista científico como tecnológico.Este trabajo ha sido desarrollado en el marco de los proyectos TEC2009-13991-C02-01 financiado por el Ministerio de Ciencia e Innovación y FACTOTEM2 S2009/ESP-1781 financiado por la Comunidad de Madrid.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Ignacio Raúl Matías Maestro.- Secretario: Antonia Isabel Pérez Garcilópez.- Vocal: Dimitrios C. Zografopoulo

    Modal liquid crystal microaxicon array

    Get PDF
    A novel tunable liquid crystal microaxicon array is proposed and experimentally demonstrated. The proposed structure is capable of generating tunable axicons (thousands of elements) of micrometric size, with simple control (four control voltages) and low voltage, and is totally reconfigurable. Depending on the applied voltages, control over the diameter, as well as the effective wedge angle, can be achieved. Controls over the diameter ranging from 107 to 77 μm have been demonstrated. In addition, a control over the phase profile tunability, from 12π to 24π radians, has been demonstrated. This result modifies the effective cone angle. The diameter tunability, as well the effective cone angle, results in a control over the nondiffractive Bessel beam distance. The RMS wavefront deviation from the ideal axicon is only λ∕3. The proposed device has several advantages over the existing microaxicon arrays, including being simple having a low cost. The device could contribute to developing new applications and to reducing the fabrication costs of current devices

    Liquid crystal temperature sensor based on a micrometric structure and a metallic nanometric layer

    Get PDF
    This letter presents a novel temperature sensor, which consists of an interdigitated comb electrode structure with a micrometric-scale size, nanometric metallic layer, and nematic liquid crystal (NLC) film. This sensor exploits the permittivity dependence of the NLC with temperature and principle of electrical conductivity above the percolation threshold in thin film metallic layers. The latter has been demonstrated to increase the temperature sensitivity considerably. The high impedance input reduces the power dissipation, and the high enough voltage output makes it easy to measure the output signal with high precision. The operation principle and fabrication process as well as the characterization of the temperature sensor are presented. Experimental results show that the device offers a sensitivity of 9 mV/°C and is dependent on the applied voltage. This is six times greater than the same structure without the use of a nanometric layer

    Recent Advances in Adaptive Liquid Crystal Lenses

    Get PDF
    An adaptive-focus lens is a device that is capable of tuning its focal length by means of an external stimulus. Numerous techniques for the demonstration of such devices have been reported thus far. Moving beyond traditional solutions, several new approaches have been proposed in recent years based on the use of liquid crystals, which can have a great impact in emerging applications. This work focuses on the recent advances in liquid crystal lenses with diameters larger than 1 mm. Recent demonstrations and their performance characteristics are reviewed, discussing the advantages and disadvantages of the reported technologies and identifying the challenges and future prospects in the active research field of adaptive-focus liquid crystal (LC) lenses.This work was supported by Comunidad de Madrid and FEDER Program under grant S2018/NMT-4326 and the Ministerio de Economía y Competitividad of Spain (TEC2013-47342-C2-2-R)

    Using an analytical model to design liquid crystal microlenses

    Get PDF
    We have developed new analytical expressions for designing liquid crystal (LC) microlenses. These equations are based on a novel equivalent electric circuit and can be used to create an optimum design for the LC lenses in which the lens diameter ranges from a few micrometers to several millimeters. Thus far, only experimental studies have been conducted on the LC lenses. The analytical expressions developed in this letter depend on various manufacturing parameters and can be used to design lenses with specific focal lengths and a parabolic phase profile. The required driving scheme (modal or hole-patterned) can be predicted. The LC microlenses were manufactured and electrooptically characterized: the measurements were compared using an analytical approach

    A novel liquid crystal temperature sensor based on modal control principle

    Get PDF
    [Poster of]: 12th European Conference on Liquid Crystals (ECLC 2013), 22-27 September, 2013, Rhodes, Greece.The well-known electrically-controlled anisotropic properties of liquid crystals not only have been valued in displays applications, but also have led to the conception of innovative approaches for a wide and diversified field of applications, such as optical communications, imaging, metamaterials, microwaves, biomedical, etc. Also, the fact that liquid crystals parameters have a strong dependence with temperature, has allowed researchers to extend the design of liquid crystal devices into the field of sensors. The simultaneous effect of both dependences, on voltage and temperature, has been recently exploited in a novel frequency-temperature liquid crystal transducer [1]...Financial support of Spanish Ministerio de Economía y Competitividad (grant no.TEC2009-13991-C02-01) and Comunidad de Madrid (grant no. FACTOTEM2 S2009/ESP-1781) is acknowledged.No publicad

    An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display

    Get PDF
    In recent years, many experimental and theoretical research groups worldwide have actively worked on demonstrating the use of liquid crystals (LCs) as adaptive lenses for image generation, waveform shaping, and non-mechanical focusing applications. In particular, important achievements have concerned the development of alternative solutions for 3D vision. This work focuses on the design and evaluation of the electro-optic response of a LC-based 2D/3D autostereoscopic display prototype. A strategy for achieving 2D/3D vision has been implemented with a cylindrical LC lens array placed in front of a display; this array acts as a lenticular sheet with a tunable focal length by electrically controlling the birefringence. The performance of the 2D/3D device was evaluated in terms of the angular luminance, image deflection, crosstalk, and 3D contrast within a simulated environment. These measurements were performed with characterization equipment for autostereoscopic 3D displays (angular resolution of 0.03 )

    Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses

    Get PDF
    Copyright 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments (2013), 84 (11). and may be found at http://dx.doi.org/10.1063/1.4832419In this work, a novel equivalent electric circuit for modeling liquid crystal microlenses is proposed. This model is focused on explaining a lens behavior at the micrometric scale, using its manufacturing parameters. It suggests an approach to predict the solution of the voltage gradient distribution across a microlens. An interesting feature of the model is that it provides an analytical solution for microlenses with modal and hole-patterned electrode schemes, by a simple software tool. The model flexibility allows lens designers to apply complex waveform signals with different harmonics. The voltage distribution has been tested. The simulated and measured voltage profiles are fairly in agreement.Spanish Ministerio de Economia y Competitividad (Grant No. TEC2009-13991-C02-01) and Comunidad de Madrid (Grant No. FACTOTEM S2009/ESP/1781).Publicad

    Modal liquid crystal temperature sensor

    Get PDF
    Proceeding of: 2014 IEEE SENSORS proceedings: Valencia, Spain, November 2-5, 2014.In this work, a novel liquid crystal temperature sensor is proposed. This sensor is composed by only two electrodes. A simple and easily scalable structure uses the temperature dependence of the liquid crystal permittivity as the sensing magnitude. The sensor has a high sensitivity, low voltage control, low power consumption and high linearity. The analytical modelling allows an optimization of the structure, in terms of sensitivity. Several liquid crystal has been investigated. The response improves the characteristics of previous LC sensors and even some commercial sensors (e.g. 60 mV/°C for 10 V rms of applied voltage, six times more than of most silicon temperature sensors).This work was supported in part by the Ministerio de Ciencia e Innovación of Spain (grant no.TEC2009-13991-C02-01) and the Comunidad de Madrid (grant no. FACTOTEM2 S2009/ESP-1781)

    High-Sensitivity Fabry-Perot Temperature Sensor Based on Liquid Crystal Doped With Nanoparticles

    Get PDF
    The response of a Fabry-Perot interferometer filled with a nematic liquid crystal doped with silver nanoparticles is theoretically studied as a temperature sensor. It has been observed that the high dependence of the extraordinary refractive index of a liquid crystal along with the influence of the plasmonic resonances of nanoparticles produce useful phenomena for temperature sensing. Accordingly, we theoretically demonstrated the optical response of this device as a function of the temperature and the nanoparticles radius. The application of different technologies as optical sources was investigated through a simulation program. The latter enabled us to estimate the sensitivity and predict interesting parameters of the device, such as optimum wavelength ranges, for the optical sources or optimum sizes of the nanoparticles. Maximum sensitivities of 24 . 10(-2) dB/degrees C are obtained.This work was supported in part by the Ministerio de Ciencia e Innovación of Spain (grant no. TEC2013-47342-C2-2-R) and the Comunidad de Madrid (grant no. FACTOTEM2 S2009/ESP-1781).Publicad
    corecore