84 research outputs found

    Development of ELISAs for diagnosis of acute typhoid fever in Nigerian children

    Get PDF
    Improved serodiagnostic tests for typhoid fever (TF) are needed for surveillance, to facilitate patient management, curb antibiotic resistance, and inform public health programs. To address this need, IgA, IgM and IgG ELISAs using Salmonella enterica serovar Typhi (S. Typhi) lipopolysaccharide (LPS) and hemolysin E (t1477) protein were conducted on 86 Nigerian pediatric TF and 29 non-typhoidal Salmonella (NTS) cases, 178 culture-negative febrile cases, 28 "other" (i.e., non-Salmonella) pediatric infections, and 48 healthy Nigerian children. The best discrimination was achieved between TF and healthy children. LPS-specific IgA and IgM provided receiver operator characteristic areas under the curve (ROC AUC) values of 0.963 and 0.968, respectively, and 0.978 for IgA+M combined. Similar performance was achieved with t1477-specific IgA and IgM (0.968 and 0.968, respectively; 0.976 combined). IgG against LPS and t1477 was less accurate for discriminating these groups, possibly as a consequence of previous exposure, although ROC AUC values were still high (0.928 and 0.932, respectively). Importantly, discrimination between TF and children with other infections was maintained by LPS-specific IgA and IgM (AUC = 0.903 and 0.934, respectively; 0.938 combined), and slightly reduced for IgG (0.909), while t1477-specific IgG performed best (0.914). A similar pattern was seen when comparing TF with other infections from outside Nigeria. The t1477 may be recognized by cross-reactive antibodies from other acute infections, although a robust IgG response may provide some diagnostic utility in populations where incidence of other infections is low, such as in children. The data are consistent with IgA and IgM against S. Typhi LPS being specific markers of acute TF

    Profiling of Temperature-Induced Changes in Borrelia burgdorferi Gene Expression by Using Whole Genome Arrays

    Get PDF
    Borrelia burgdorferi is the etiologic agent of Lyme disease, the most prevalent arthropod-borne disease in the United States. The genome of the type strain, B31, consists of a 910,725-bp linear chromosome and 21 linear and circular plasmids comprising 610,694 bp. During its life cycle, the spirochete exists in distinctly different environments, cycling between a tick vector and a mammalian host. Temperature is one environmental factor known to affect B. burgdorferi gene expression. To identify temperature-responsive genes, genome arrays containing 1,662 putative B. burgdorferi open reading frames (ORFs) were prepared on nylon membranes and employed to assess gene expression in B. burgdorferi B31 grown at 23 and 35°C. Differences in expression of more than 3.5 orders of magnitude could be readily discerned and quantitated. At least minimal expression from 91% of the arrayed ORFs could be detected. A total of 215 ORFs were differentially expressed at the two temperatures; 133 were expressed at significantly greater levels at 35°C, and 82 were more significantly expressed at 23°C. Of these 215 ORFs, 134 are characterized as genes of unknown function. One hundred thirty-six (63%) of the differentially expressed genes are plasmid encoded. Of particular interest is plasmid lp54 which contains 76 annotated putative genes; 31 of these exhibit temperature-regulated expression. These findings underscore the important role plasmid-encoded genes may play in adjustment of B. burgdorferi to growth under diverse environmental conditions

    Serologic responses to the PfEMP1 DBL-CIDR head structure may be a better indicator of malaria exposure than those to the DBL-α tag

    Get PDF
    BackgroundPlasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR).MethodsA protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season.ResultsMalian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure.ConclusionsLarger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure

    PLoS Neglected Tropical Diseases

    No full text
    p. 1-13Background: Leptospirosis is a widespread zoonotic disease worldwide. The lack of an adequate laboratory test is a major barrier for diagnosis, especially during the early stages of illness, when antibiotic therapy is most effective. Therefore, there is a critical need for an efficient diagnostic test for this life threatening disease. Methodology: In order to identify new targets that could be used as diagnostic makers for leptopirosis, we constructed a protein microarray chip comprising 61% of Leptospira interrogans proteome and investigated the IgG response from 274 individuals, including 80 acute-phase, 80 convalescent-phase patients and 114 healthy control subjects from regions with endemic, high endemic, and no endemic transmission of leptospirosis. A nitrocellulose line blot assay was performed to validate the accuracy of the protein microarray results. Principal findings: We found 16 antigens that can discriminate between acute cases and healthy individuals from a region with high endemic transmission of leptospirosis, and 18 antigens that distinguish convalescent cases. Some of the antigens identified in this study, such as LipL32, the non-identical domains of the Lig proteins, GroEL, and Loa22 are already known to be recognized by sera from human patients, thus serving as proof-of-concept for the serodiagnostic antigen discovery approach. Several novel antigens were identified, including the hypothetical protein LIC10215 which showed good sensitivity and specificity rates for both acute- and convalescent-phase patients. Conclusions: Our study is the first large-scale evaluation of immunodominant antigens associated with naturally acquired leptospiral infection, and novel as well as known serodiagnostic leptospiral antigens that are recognized by antibodies in the sera of leptospirosis cases were identified. The novel antigens identified here may have potential use in both the development of new tests and the improvement of currently available assays for diagnosing this neglected tropical disease. Further research is needed to assess the utility of these antigens in more deployable diagnostic platforms

    Transient Cannabinoid Receptor 2 Blockade during Immunization Heightens Intensity and Breadth of Antigen-specific Antibody Responses in Young and Aged mice.

    No full text
    The hallmark of vaccines is their ability to prevent the spread of infectious pathogens and thereby serve as invaluable public health tool. Despite their medical relevance, there is a gap in our understanding of the physiological factors that mediate innate and adaptive immune response to vaccines. The endocannabinoid (eCB) system is a critical modulator of homeostasis in vertebrates. Our results indicate that macrophages and dendritic cells produce the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG) upon antigen activation. We have also established that 2-AG levels are upregulated in the serum and in the lymph node of mice during vaccination. We hypothesized that the intrinsic release of eCBs from immune cells during activation by pathogenic antigens mitigate inflammation, but also suppress overall innate and adaptive immune response. Here we demonstrate, for the first time, that transient administration of the cannabinoid receptor 2 antagonist AM630 (10 mg/kg) or inverse agonist JTE907 (3 mg/kg) during immunization heightens the intensity and breadth of antigen-specific immune responses in young and aged mice through the upregulation of immunomodulatory genes in secondary lymphoid tissues

    Identification of Potential Serodiagnostic and Subunit Vaccine Antigens by Antibody Profiling of Toxoplasmosis Cases in Turkey*

    No full text
    Toxoplasmosis, caused by infection of the protozoan parasite Toxoplasma gondii, is associated with mild disease in healthy individuals, whereas individuals with depressed immunity may develop encephalitis, neurologic disorders, and other organ diseases. Women who develop acute toxoplasmosis during pregnancy are at risk of transmitting the infection to the fetus, which may lead to fetal damage. A diagnosis is usually confirmed by measuring IgG, or IgM where it is important to determine the onset of infection. A negative IgM result essentially excludes acute infection, whereas a positive IgM test is largely uninterpretable because IgM can persist for up to 18 months after infection. To identify antigens for improved diagnosis of acute infection, we probed protein microarrays displaying the polypeptide products of 1357 Toxoplasma exons with well-characterized sera from Turkey. The sera were classified according to conventional assays into (1) seronegative individuals with no history of T. gondii infection; (2) acute infections defined by clinical symptoms, high IgM titers, and low avidity IgG; (3) chronic/convalescent cases with high avidity IgG but persisting IgM; (iv) true chronic infections, defined by high avidity IgG and no IgM. We have identified 38 IgG target antigens and 108 IgM target antigens that can discriminate infected patients from healthy controls, one or more of which could form the basis of a ‘tier-1′ test to determine current or previous exposure. Of these, three IgG antigens and five IgM antigens have the potential to discriminate chronic/IgM persisting or true chronics from recent acutely infected patients (a ‘tier-2′ test). Our analysis of the antigens revealed several enriched features relative to the whole proteome, which include transmembrane domains, signal peptides, or predicted localization at the outer membrane. This is the first protein microarray survey of the antibody response to T. gondii, and will help in the development of improved serodiagnostics and vaccines

    Towards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays

    No full text
    Tularemia in humans is caused mainly by two subspecies of the Gram-negative facultative anaerobe Francisella tularensis: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). The current serological test for tularemia is based on agglutination of whole organisms, and the reactive antigens are not well understood. Previously, we profiled the antibody responses in type A and B tularemia cases in the United States using a proteome microarray of 1,741 different proteins derived from the type A strain Schu S4. Fifteen dominant antigens able to detect antibodies to both types of infection were identified, although these were not validated in a different immunoassay format. Since type A and B subspecies are closely related, we hypothesized that Schu S4 antigens would also have utility for diagnosing type B tularemia caused by strains from other geographic locations. To test this, we probed the Schu S4 array with sera from 241 type B tularemia cases in Spain. Despite there being no type A strains in Spain, we confirmed the responses against some of the same potential serodiagnostic antigens reported previously, as well as determined the responses against additional potential serodiagnostic antigens. Five potential serodiagnostic antigens were evaluated on immunostrips, and two of these (FTT1696/GroEL and FTT0975/conserved hypothetical protein) discriminated between the Spanish tularemia cases and healthy controls. We conclude that antigens from the type A strain Schu S4 are suitable for detection of antibodies from patients with type B F. tularensis infections and that these can be used for the diagnosis of tularemia in a deployable format, such as the immunostrip
    • …
    corecore