41 research outputs found

    Enhanced thermo-spin effects in iron-oxide/metal multilayers

    Get PDF
    Since the discovery of the spin Seebeck effect (SSE), much attention has been devoted to the study of the interaction between heat, spin, and charge in magnetic systems. The SSE refers to the generation of a spin current upon the application of a thermal gradient and detected by means of the inverse spin Hall effect. Conversely, the spin Peltier effect (SPE) refers to the generation of a heat current as a result of a spin current induced by the spin Hall effect. Here we report a strong enhancement of both the SSE and SPE in Fe3O4/Pt multilayered thin films at room temperature as a result of an increased thermo-spin conversion efficiency in the multilayers. These results open the possibility to design thin film heterostructures that may boost the application of thermal spin currents in spintronics

    Control of Structural and Magnetic Properties of Polycrystalline Co2FeGe Films via Deposition and Annealing Temperatures

    Get PDF
    : Thin polycrystalline Co2FeGe films with composition close to stoichiometry have been fabricated using magnetron co-sputtering technique. Effects of substrate temperature (TS) and postdeposition annealing (Ta) on structure, static and dynamic magnetic properties were systematically studied. It is shown that elevated TS (Ta) promote formation of ordered L21 crystal structure. Variation of TS (Ta) allow modification of magnetic properties in a broad range. Saturation magnetization ~920 emu/cm3 and low magnetization damping parameter α ~ 0.004 were achieved for TS = 573 K. This in combination with soft ferromagnetic properties (coercivity below 6 Oe) makes the films attractive candidates for spin-transfer torque and magnonic devices

    Temperature dependence of the spin Seebeck effect in [Fe3O4/Pt]n multilayers

    Get PDF
    We report temperature dependent measurements of the spin Seebeck effect (SSE) in multilayers formed by repeated growth of a Fe3O4/Pt bilayer junction. The magnitude of the observed enhancement of the SSE, relative to the SSE in the single bilayer, shows a monotonic increase with decreasing the temperature. This result can be understood by an increase of the characteristic length for spin current transport in the system, in qualitative agreement with the recently observed increase in the magnon diffusion length in Fe3O4 at lower temperatures. Our result suggests that the thermoelectric performance of the SSE in multilayer structures can be further improved by careful choice of materials with suitable spin transport properties

    Spin-phonon coupling in epitaxial Sr0.6Ba0.4MnO3 thin films

    Get PDF
    Spin-phonon coupling is investigated in epitaxially strained Sr1-xBaxMnO3 thin films with perovskite structure by means of microwave (MW) and infrared (IR) spectroscopy. In this work we focus on the Sr0.6Ba0.4MnO3 composition grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate. The MW complex electromagnetic response shows a decrease in the real part and a clear anomaly in the imaginary part around 150 K. Moreover, it coincides with a 17% hardening of the lowest-frequency polar phonon seen in IR reflectance spectra. In order to further elucidate this phenomenon, low-energy muon-spin spectroscopy was carried out, signaling the emergence of antiferromagnetic order with Néel temperature (TN) around 150 K. Thus, our results confirm that epitaxial Sr0.6Ba0.4MnO3 thin films display strong spin-phonon coupling below TN, which may stimulate further research on tuning the magnetoelectric coupling by controlling the epitaxial strain and chemical pressure in the Sr1-xBaxMnO3 system

    Nature of antiferromagnetic order in epitaxially strained multiferroic SrMnO3 thin films

    Get PDF
    Epitaxial films of SrMnO3 and bilayers of SrMnO3/La0.67Sr0.33MnO3 have been deposited by pulsed laser deposition on different substrates, namely, LaAlO3 (001), (LaAlO3)0.3(Sr2AlTaO6)0.7 (001), and SrTiO3 (001), allowing us to perform an exhaustive study of the dependence of antiferromagnetic order and exchange bias field on epitaxial strain. The Néel temperatures (TN) of the SrMnO3 films have been determined by low-energy muon spin spectroscopy. In agreement with theoretical predictions, TN is reduced as the epitaxial strain increases. From the comparison with first-principles calculations, a crossover from G-type to C-type antiferromagnetic orders is proposed at a critical tensile strain of around 1.6±0.1%. The exchange bias (coercive) field, obtained for the bilayers, increases (decreases) by increasing the epitaxial strain in the SrMnO3 layer, following an exponential dependence with temperature. Our experimental results can be explained by the existence of a spin-glass (SG) state at the interface between the SrMnO3 and La0.67Sr0.33MnO3 films. This SG state is due to the competition between the different exchange interactions present in the bilayer and favored by increasing the strain in the SrMnO3 layer

    Spin Seebeck effect in insulating epitaxial ¿-Fe2O3 thin films

    Get PDF
    We report the fabrication of high crystal quality epitaxial thin films of maghemite (¿-Fe2O3), a classic ferrimagnetic insulating iron oxide. Spin Seebeck effect (SSE) measurements in ¿-Fe2O3/Pt bilayers as a function of sample preparation conditions and temperature yield a SSE coefficient of 0.5(1) µV/K at room temperature. Dependence on temperature allows us to estimate the magnon diffusion length in maghemite to be in the range of tens of nanometers, in good agreement with that of conducting iron oxide magnetite (Fe3O4), establishing the relevance of spin currents of magnonic origin in magnetic iron oxides

    Magnetization of Re-based double perovskites: Noninteger saturation magnetization disclosed

    Get PDF
    Contains fulltext : 34531.pdf (publisher's version ) (Open Access
    corecore