266 research outputs found
Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices
NGC 1316 is a giant, elliptical galaxy containing a complex network of dark,
dust features. The morphology of these features has been examined in some
detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is
found that most of the features are constituted of long filaments. There also
exist a great number of dark structures protruding inwards from the filaments.
Many of these structures are strikingly similar to elephant trunks in H II
regions in the Milky Way Galaxy, although much larger. The structures, termed
mammoth trunks, generally are filamentary and often have shapes resembling the
letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved
into two or more filaments, many of which showing signs of being intertwined. A
model of the mammoth trunks, related to a recent theory of elephant trunks, is
proposed. Based on magnetized filaments, the model is capable of giving an
account of the various shapes of the mammoth trunks observed, including the
twined structures.Comment: Accepted for publication in Astrophysics & Space Scienc
Faraday rotation, stochastic magnetic fields and CMB maps
The high- and low-frequency descriptions of the pre-decoupling plasma are
deduced from the Vlasov-Landau treatment generalized to curved space-times and
in the presence of the relativistic fluctuations of the geometry. It is
demonstrated that the interplay between one-fluid and two-fluid treatments is
mandatory for a complete and reliable calculation of the polarization
observables. The Einstein-Boltzmann hierarchy is generalized to handle the
dispersive propagation of the electromagnetic disturbances in the
pre-decoupling plasma. Given the improved physical and numerical framework, the
polarization observables are computed within the magnetized CDM
paradigm (mCDM). In particular, the Faraday-induced B-mode is
consistently estimated by taking into account the effects of the magnetic
fields on the initial conditions of the Boltzmann hierarchy, on the dynamical
equations and on the dispersion relations. The complete calculations of the
angular power spectra constitutes the first step for the derivation of
magnetized maps of the CMB temperature and polarization which are here obtained
for the first time and within the minimal mCDM model. The obtained
results set the ground for direct experimental scrutiny of large-scale
magnetism via the low and high frequency instruments of the Planck explorer
satellite.Comment: 53 pages, 15 included figure
Banded electron structure formation in the inner magnetosphere
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94985/1/grl10936.pd
Product rule for gauge invariant Weyl symbols and its application to the semiclassical description of guiding center motion
We derive a product rule for gauge invariant Weyl symbols which provides a
generalization of the well-known Moyal formula to the case of non-vanishing
electromagnetic fields. Applying our result to the guiding center problem we
expand the guiding center Hamiltonian into an asymptotic power series with
respect to both Planck's constant and an adiabaticity parameter already
present in the classical theory. This expansion is used to determine the
influence of quantum mechanical effects on guiding center motion.Comment: 24 pages, RevTeX, no figures; shortened version will be published in
J.Phys.
Cosmic polarimetry in magnetoactive plasmas
Polarimetry of the Cosmic Microwave Background (CMB) represents one of the
possible diagnostics aimed at testing large-scale magnetism at the epoch of the
photon decoupling. The propagation of electromagnetic disturbances in a
magnetized plasma leads naturally to a B-mode polarization whose angular power
spectrum is hereby computed both analytically and numerically. Combined
analyses of all the publicly available data on the B-mode polarization are
presented, for the first time, in the light of the magnetized CDM
scenario. Novel constraints on pre-equality magnetism are also derived in view
of the current and expected sensitivities to the B-mode polarization.Comment: 34 pages, 13 figure
Observation of confined current ribbon in JET plasmas
we report the identification of a localised current structure inside the JET
plasma. It is a field aligned closed helical ribbon, carrying current in the
same direction as the background current profile (co-current), rotating
toroidally with the ion velocity (co-rotating). It appears to be located at a
flat spot in the plasma pressure profile, at the top of the pedestal. The
structure appears spontaneously in low density, high rotation plasmas, and can
last up to 1.4 s, a time comparable to a local resistive time. It considerably
delays the appearance of the first ELM.Comment: 10 pages, 6 figure
Charged Particles in a 2+1 Curved Background
The coupling to a 2+1 background geometry of a quantized charged test
particle in a strong magnetic field is analyzed. Canonical operators adapting
to the fast and slow freedoms produce a natural expansion in the inverse square
root of the magnetic field strength. The fast freedom is solved to the second
order.
At any given time, space is parameterized by a couple of conjugate operators
and effectively behaves as the `phase space' of the slow freedom. The slow
Hamiltonian depends on the magnetic field norm, its covariant derivatives, the
scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page
Structural Invariance of Sunspot Umbrae Over the Solar Cycle: 1993-2004
Measurements of maximum magnetic flux, minimum intensity, and size are
presented for 12 967 sunspot umbrae detected on the NASA/NSO
spectromagnetograms between 1993 and 2004 to study umbral structure and
strength during the solar cycle. The umbrae are selected using an automated
thresholding technique. Measured umbral intensities are first corrected for a
confirming observation of umbral limb-darkening. Log-normal fits to the
observed size distribution confirm that the size spectrum shape does not vary
with time. The intensity-magnetic flux relationship is found to be steady over
the solar cycle. The dependence of umbral size on the magnetic flux and minimum
intensity are also independent of cycle phase and give linear and quadratic
relations, respectively. While the large sample size does show a low amplitude
oscillation in the mean minimum intensity and maximum magnetic flux correlated
with the solar cycle, this can be explained in terms of variations in the mean
umbral size. These size variations, however, are small and do not substantiate
a meaningful change in the size spectrum of the umbrae generated by the Sun.
Thus, in contrast to previous reports, the observations suggest the equilibrium
structure, as testified by the invariant size-magnetic field relationship, as
well as the mean size (i.e. strength) of sunspot umbrae do not significantly
depend on solar cycle phase.Comment: 17 pages, 6 figures. Published in Solar Physic
Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma
Using kinetic theory for homogeneous collisionless magnetized plasmas, we
present an extended review of the plasma waves and instabilities and discuss
the anisotropic response of generalized relativistic dielectric tensor and
Onsager symmetry properties for arbitrary distribution functions. In general,
we observe that for such plasmas only those electromagnetic modes whose
magnetic field perturbations are perpendicular to the ambient magneticeld,
i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique
propagation all modes do show such anisotropic effects. Considering the
non-relativistic bi-Maxwellian distribution and studying the relevant
components of the general dielectric tensor under appropriate conditions, we
derive the dispersion relations for various modes and instabilities. We show
that only the electromagnetic R- and L- waves, those derived from them and the
O-mode are affected by thermal anisotropies, since they satisfy the required
condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and
the modes derived from it (the pure transverse X-mode and Bernstein mode) show
no such effect. In general, we note that the thermal anisotropy modifies the
parallel propagating modes via the parallel acoustic effect, while it modifies
the perpendicular propagating modes via the Larmor-radius effect. In oblique
propagation for kinetic Alfven waves, the thermal anisotropy affects the
kinetic regime more than it affects the inertial regime. The generalized fast
mode exhibits two distinct acoustic effects, one in the direction parallel to
the ambient magnetic field and the other in the direction perpendicular to it.
In the fast-mode instability, the magneto-sonic wave causes suppression of the
firehose instability. We discuss all these propagation characteristics and
present graphic illustrations
Region of magnetic dominance near a rotating black hole
This is a brief contribution in which a simplified criterion of the relevance
of the test-particle approximation describing motion of material near a
magnetized black hole is discussed. Application to processes of the dissipative
collimation of astronomical jets (as proposed by de Felice and Curir, 1992) is
mentioned.Comment: 11 pages, to appear in General Relativity and Gravitation, also
available (with additional illustrations) at
http://otokar.troja.mff.cuni.cz/user/karas/au_www/karas/papers.ht
- …