257 research outputs found

    Defining Moments: The Move to the New Campus

    Get PDF

    The Officer Corps in an All-Volunteer Force: Will College Men Serve?

    Get PDF
    In order to determine the feasibility of an all-volunteer officer corps in the absence of a draft, a group research project at the Naval War College examined the attitudes of college youth toward military service

    The ACS survey of globular clusters. XIII. Photometric calibration in comparison with Stetson standards

    Full text link
    In this study we compare the photometric data of 34 Milky Way globular clusters, observed within the ACS Treasury Program (PI: Ata Sarajedini) with the corresponding ground-based data, provided by the Photometric Standard Field Catalogs of Stetson (2000, 2005). We focus on the transformation between the HST/ACS F606W to V-band and F814W to I-band only. The goal is to assess the validity of the filter transformation equations by Sirianni et al.(2005) with respect to their dependence on metallicity, Horizontal Branch morphology, mass and integrated (V-I) colour of the various globular clusters. Such a dependence is expected due to the fact that the transformation equations are based on the observations of only one globular cluster, i.e., NGC 2419. Surprisingly, the correlation between offset and metallicity is found to be weak, with a low level significance. The correlation between offset and Horizontal Branch structure, as well as total cluster mass is still weaker. Based on the available data we do not find the photometric offset to be linked to multiple stellar populations, e.g., as found in NGC 0288, NGC 1851, and NGC 5139. The results of this study show that there are small systematic offsets between the transformed ACS- and observed ground based photometry, and that these are only weakly correlated, if at all, with various cluster parameters and their underlying stellar populations. As a result, investigators wishing to transform globular cluster photometry from the Sirianni et al.(2005) ground-based V, I system onto the Stetson (2000) system simply need to add 0.040 (+/-0.012) to the V-band magnitudes and 0.047 (+/-0.011) to the I-band magnitudes. This in turn means that the transformed ACS (V-I) colours match the ground-based values from Stetson (2000) to within ~0.01 mag.Comment: 28 pages, 14 figures, accepted for publication in ApJ

    Galactic structure studies with BATC star counts

    Full text link
    We report the first results of star counts carried out with the National Astronomical Observatories (NAOC) 60/90 cm Schmidt Telescope in 15 intermediate-band filters from 3000 to 10000 {\AA} in the BATC survey. We analyze a sample of over 1400 main sequence stars (1414\leV21\le21), which lie in the field with central coordinates R.A.=09h53m13s.3009^h53^m13^s.30 and DEC=474900.0^\circ49^{\prime}00^{\prime\prime}.0 (J2000). The field of view is 0.95 deg2^{2}, and the spatial scale was 1\arcsec.67. In our model, the distribution of stars perpendicular to the plane of the Galaxy is given by two exponential disks (thin disk plus thick disk) and a de Vaucouleurs halo. Based on star counts, we derive the scale heights of the thin disk to be 32015+14320^{+14}_{-15} pc and of the thick disk to be 64032+30640^{+30}_{-32} pc, respectively, with a local density of 7.0±17.0\pm1% of the thin disk. We find that the observed counts support an axial ratio of c/a0.6c/a\le0.6 for a de Vaucouleurs r1/4r^{1/4} law, implying a more flattened halo. We also derive the stellar luminosity function (SLF) for the thin disk, and it partly agrees with the Hipparcos luminosity function.Comment: 17pages,9 figure

    The ACS Survey of Galactic Globular Clusters: M54 and Young Populations in the Sagittarius Dwarf Spheroidal Galaxy

    Get PDF
    We present new Hubble Space Telescope photometry of the massive globular cluster M54 (NGC 6715) and the superposed core of the tidally disrupted Sagittarius (Sgr) dSph galaxy as part of the ACS Survey of Galactic Globular Clusters. Our deep (F606W~26.5), high-precision photometry yields an unprecedentedly detailed color-magnitude diagram showing the extended blue horizontal branch and multiple main sequences of the M54+Sgr system. The distance and reddening to M54 are revised usingboth isochrone and main-sequence fitting to (m-M)_0=17.27 and E(B-V)=0.15. Preliminary assessment finds the M54+Sgr field to be dominated by the old metal-poor populations of Sgr and the globular cluster. Multiple turnoffs indicate the presence of at least two intermediate-aged star formation epochs with 4 and 6 Gyr ages and [Fe/H]=-0.4 to -0.6. We also clearly show, for the first time, a prominent, 2.3 Gyr old Sgr population of near-solar abundance. A trace population of even younger (0.1-0.8 Gyr old), more metal-rich ([Fe/H]\sim0.6) stars is also indicated. The Sgr age-metallicity relation is consistent with a closed-box model and multiple (4-5) star formation bursts over the entire life of the satellite, including the time since Sgr began disrupting.Comment: Accepted to ApJ Letter; 11 pages, 2 figures; figure 1 uploaded as jpg; paper in ApJ format with full-resolution figures available at: http://www.astro.ufl.edu/~ata/public_hstgc/paperIV/paperIV.p

    The ACS Survey of Galactic Globular Clusters. II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models

    Full text link
    The ACS Survey of Galactic Globular Clusters, an HST Treasury Project, will deliver high quality, homogeneous photometry of 65 globular clusters. This paper introduces a new collection of stellar evolution tracks and isochrones suitable for analyzing the ACS Survey data. Stellar evolution models were computed at [Fe/H]= -2.5, -2.0, -1.5, -1.0, -0.5, and 0; [alpha/Fe]= -0.2, 0, 0.2, 0.4, 0.6, and 0.8; and three initial He abundances for masses from 0.1 to 1.8 Msun and ages from 2 to 15 Gyr. Each isochrone spans a wide range in luminosity from Mv~14 up to the tip of the red giant branch. These are complemented by a set of He-burning tracks that extend from the zero age horizontal branch to the onset of thermal pulsations on the asymptotic giant branch. In addition, a set of computer programs are provided that make it possible to interpolate the isochrones in [Fe/H], generate luminosity functions from the isochrones, and create synthetic horizontal branch models. The tracks and isochrones have been converted to the observational plane with two different color-Teff transformations, one synthetic and one semi-empirical, in ground-based B, V, and I, and F606W and F814W for both ACS-WFC and WFPC2 systems. All models and programs presented in this paper are available from http://stellar.dartmouth.edu/~models/Comment: 46 pages, 12 figures, AJ in press; figures 11 and 12 are reduced in siz

    The ACS Survey of Galactic Globular Clusters. I. Overview and Clusters without PreviousHubble Space Telescope Photometry

    Get PDF
    We present the first results of a large Advanced Camera for Surveys (ACS) survey of Galactic globular clusters. This Hubble Space Telescope (HST) Treasury project is designed to obtain photometry with S/N (signal-to-noise ratio) 10 for main-sequence stars with masses 0.2 M⊙ in a sample of globulars using the ACS Wide Field Channel. Here we focus on clusters without previous HST imaging data. These include NGC 5466, NGC 6779, NGC 5053, NGC 6144, Palomar 2, E3, Lyngå 7, Palomar 1, and NGC 6366. Our color-magnitude diagrams (CMDs) extend reliably from the horizontal branch to as much as 7 mag fainter than the main-sequence turnoff and represent the deepest CMDs published to date for these clusters. Using fiducial sequences for three standard clusters (M92, NGC 6752, and 47 Tuc) with well-known metallicities and distances, we perform main-sequence fitting on the target clusters in order to obtain estimates of their distances and reddenings. These comparisons, along with fitting the cluster main sequences to theoretical isochrones, yield ages for the target clusters. We find that the majority of the clusters have ages that are consistent with the standard clusters at their metallicities. The exceptions are E3, which appears ~2 Gyr younger than 47 Tuc, and Pal 1, which could be as much as 8 Gyr younger than 47 Tuc

    The ACS Survey of Galactic Globular Clusters. IX. Horizontal Branch Morphology and the Second Parameter Phenomenon

    Full text link
    The horizontal branch (HB) morphology of globular clusters (GCs) is most strongly influenced by metallicity. The second parameter phenomenon acknowledges that metallicity alone is not enough to describe the HB morphology of all GCs. In particular, the outer Galactic halo contains GCs with redder HBs at a given metallicity than are found inside the Solar circle. Thus, at least a second parameter is required to characterize HB morphology. Here we analyze the median color difference between the HB and the red giant branch (RGB), d(V-I), measured from HST ACS photometry of 60 GCs within ~20 kpc of the Galactic Center. Analysis of this homogeneous data set reveals that, after the influence of metallicity has been removed, the correlation between d(V-I) and age is stronger than that of any other parameter considered. Expanding the sample to include HST photometry of the 6 most distant Galactic GCs lends additional support to the correlation between d(V-I) and age. This result is robust with respect to the adopted metallicity scale and the method of age determination, but must bear the caveat that high quality, detailed abundance information is not available for a significant fraction of the sample. When a subset of GCs with similar metallicities and ages are considered, a correlation between d(V-I) and central luminosity density is exposed. With respect to the existence of GCs with anomalously red HBs at a given metallicity, we conclude that age is the second parameter and central density is most likely the third. Important problems related to HB morphology in GCs, notably multi-modal distributions and faint blue tails, remain to be explained. (Abridged)Comment: Accepted for publication in ApJ; 49 pages, 19 figure
    corecore