53 research outputs found

    Metodología para la Optimización del Aprovechamiento Energético de los Recursos de Biomasa. Aplicación a la Comunidad Valenciana

    Full text link
    La masiva implementación de recursos energéticos distribuidos y renovables es la tendencia actual para incrementar la eficiencia, sostenibilidad y fiabilidad del suministro energético y la independencia de fuentes externas. La biomasa es un recurso renovable, distribuido y abundante en España, aunque en la actualidad su uso con fines energéticos es muy limitado y poco competitivo frente a otras fuentes de energía renovable. La implementación masiva de aplicaciones de biomasa para generación de calor, electricidad y/o cogeneración requiere optimizar técnica, económica y ambientalmente su proceso de aprovechamiento. El objetivo principal de la tesis es definir una metodología de optimización del aprovechamiento energético de la biomasa en un ámbito geográfico determinado y aplicarla a la Comunidad Valenciana. Para ello, en primer lugar, se ha revisado el estado del arte de la biomasa como recurso energético y de metodologías anteriores que resolvían aspectos parciales del estudio de viabilidad de aprovechamiento energético de la biomasa. En segundo lugar se ha desarrollado una metodología, estructurada en distintos módulos, que evalúa los recursos de biomasa, cuantifica y optimiza las distancias y costes de transporte, los potenciales consumidores y caracteriza las tecnologías de aprovechamiento. Todos los módulos confluyen en un módulo de optimización y evaluación de escenarios que permite comparar distintas alternativas energéticas desde un punto de vista económico y ambiental. La metodología se ha aplicado a la Comunidad Valenciana y se ha estudiado la viabilidad de distintas aplicaciones bioenergéticas para cada comarca de la misma. El potencial energético de la biomasa residual, principalmente, agrícola y forestal asciende a casi un millón de toneladas y equivale a 260.000 toneladas equivalentes de petróleo. En la mayoría de los casos el contenido en ceniza es bajo y permite tanto aplicaciones de generación de electricidad ó cogeneración, como producción de pellets para calderas. En función de la tecnología, la potencia eléctrica instalable sería entre 85 y 145 MW, lo que equivale al 1 - 1,5% de la potencia eléctrica total instalada en la Comunidad Valenciana, y es 15 veces más que la potencia con biomasa que había instalada en 2011 (8,9 MW según datos de AVEN, Agencia Valenciana de la Energía}. La viabilidad económica de las planta de biomasa fue aceptable en la mayoría de los casos, con periodos de retorno del capital inferiores a los 10 años, especialmente en plantas de cogeneración y plantas de producción de pellets. Dicha viabilidad económica es debida, en gran medida, a la estructura logística con transporte subcontratado y previa compactación (que se mostró como la mejor alternativa en cualquier caso}, y al hecho de que las plantas tenían un tamaño razonable con cantidades de biomasa gestionada en el rango 10.000 - 80.000 t/año. El balance de emisiones de C02 fue favorable en todos los casos siendo, de nuevo, la producción de pellets y la cogeneración las aplicaciones con mejor balance, ya que el ahorro de emisiones fue entre 3 y 5 veces mayor que el correspondiente a plantas de generación de electricidad. La estructura logística óptima a nivel económico fue también la que proporcionó menores emisiones asociadas al transporte.Alfonso Solar, D. (2013). Metodología para la Optimización del Aprovechamiento Energético de los Recursos de Biomasa. Aplicación a la Comunidad Valenciana [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31636TESI

    The Spanish Turn against Renewable Energy Development

    Get PDF
    In this study, we focus on the case of Spanish energy policy and its implications for sustainable energy development. In recent years, Spanish legislation has changed dramatically in its approach to sustainable energy sources. This change is despite EU and international efforts to increase energy efficiency, and to accelerate the transition to renewable energy sources (RES) in order to reduce greenhouse gas emissions. Based on the socio-technical transitions literature, this paper assesses the role of the new legislation in this altered scenario, and analyzes the evolution of energy production in Spain in the EU context. The results are triangulated with two expert assessments. We find that Spanish energy policy is responding to the energy lobby's demands for protection for both their investment and their dominant position. This has resulted in a reduction in the number of investors combined with a lack of trust in both local and foreign investors in the sustainable energy sector, affecting also social innovations in energy transitions. We conclude that Spain is a particular case of concomitance between the energy sector and political power which raises concern about the viability of a higher level of energy sovereignty and the achievement of international commitments regarding climate change

    Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor

    Full text link
    [EN] The methods currently used for designing a fluidized bed reactor in gasification plants do not meet an integrated methodology that optimizes all the different parameters for its sizing and operational regime. In the case of small-scale (several tens of kWs biomass gasifiers), this design is especially complex, and, for this reason, they have usually been built in a very heuristic trial and error way. In this paper, an integrated methodology tailoring all the different parameters for the design and sizing of a small-scale fluidized bed gasification plants is presented. Using this methodology, a 40 kWth biomass gasification reactor was designed, including the air distribution system. Based on this design, with several simplified assumptions, a reactor was built and commissioned. Results from the experimental tests using this gasifier are also presented in this paper. As a result, it can be said the prototype works properly, and it produces syngas able to produce thermal energy or even electricity.This work was supported in part by the European Commission through GROW GREEN project (Agreement number: 730283-GROW GREEN-H2020-SCC-2016-2017/H2020-SCC-NBS2stage-2016. http://growgreenproject.eu/).Vargas-Salgado, C.; Hurtado-Perez, E.; Alfonso-Solar, D.; Malmquist, A. (2021). Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor. Sustainability. 13(3):1-23. https://doi.org/10.3390/su13031061S123133Anukam, A. I., Goso, B. P., Okoh, O. O., & Mamphweli, S. N. (2017). Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. Journal of Chemistry, 2017, 1-9. doi:10.1155/2017/6478389Yang, S., Wang, H., Wei, Y., Hu, J., & Chew, J. W. (2019). Numerical Investigation of Bubble Dynamics during Biomass Gasification in a Bubbling Fluidized Bed. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.9b01628Sharma, A., Wang, S., Pareek, V., Yang, H., & Zhang, D. (2014). CFD modeling of mixing/segregation behavior of biomass and biochar particles in a bubbling fluidized bed. Chemical Engineering Science, 106, 264-274. doi:10.1016/j.ces.2013.11.019Nilsson, S., Gómez-Barea, A., Fuentes-Cano, D., & Campoy, M. (2014). Gasification kinetics of char from olive tree pruning in fluidized bed. Fuel, 125, 192-199. doi:10.1016/j.fuel.2014.02.006Fotovat, F., Abbasi, A., Spiteri, R. J., de Lasa, H., & Chaouki, J. (2015). A CPFD model for a bubbly biomass–sand fluidized bed. Powder Technology, 275, 39-50. doi:10.1016/j.powtec.2015.01.005Sant’Anna, M. C. S., Cruz, W. R. dos S., Silva, G. F. da, Medronho, R. de A., & Lucena, S. (2017). Analyzing the fluidization of a gas-sand-biomass mixture using CFD techniques. Powder Technology, 316, 367-372. doi:10.1016/j.powtec.2016.12.023Yang, S., Fan, F., Wei, Y., Hu, J., Wang, H., & Wu, S. (2020). Three-dimensional MP-PIC simulation of the steam gasification of biomass in a spouted bed gasifier. Energy Conversion and Management, 210, 112689. doi:10.1016/j.enconman.2020.112689Qi, T., Lei, T., Yan, B., Chen, G., Li, Z., Fatehi, H., … Bai, X.-S. (2019). Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model. International Journal of Hydrogen Energy, 44(13), 6448-6460. doi:10.1016/j.ijhydene.2019.01.146Lim, Y., & Lee, U.-D. (2014). Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidized-beds. Fuel Processing Technology, 128, 199-210. doi:10.1016/j.fuproc.2014.07.017Xie, J., Zhong, W., Jin, B., Shao, Y., & Liu, H. (2012). Simulation on gasification of forestry residues in fluidized beds by Eulerian–Lagrangian approach. Bioresource Technology, 121, 36-46. doi:10.1016/j.biortech.2012.06.080Agu, C. E., Pfeifer, C., Eikeland, M., Tokheim, L.-A., & Moldestad, B. M. E. (2019). Detailed One-Dimensional Model for Steam-Biomass Gasification in a Bubbling Fluidized Bed. Energy & Fuels, 33(8), 7385-7397. doi:10.1021/acs.energyfuels.9b01340Kang, P., Hu, X. E., Lu, Y., Wang, K., Zhang, R., Han, L., … Zhou, Y. J. (2020). Modeling and Optimization for Gas Distribution Patterns on Biomass Gasification Performance of a Bubbling Spout Fluidized Bed. Energy & Fuels, 34(2), 1750-1763. doi:10.1021/acs.energyfuels.9b02512Soria-Verdugo, A., Von Berg, L., Serrano, D., Hochenauer, C., Scharler, R., & Anca-Couce, A. (2019). Effect of bed material density on the performance of steam gasification of biomass in bubbling fluidized beds. Fuel, 257, 116118. doi:10.1016/j.fuel.2019.116118Mac an Bhaird, S. T., Hemmingway, P., Walsh, E., Maglinao, A. L., Capareda, S. C., & McDonnell, K. P. (2015). Bubbling fluidised bed gasification of wheat straw–gasifier performance using mullite as bed material. Chemical Engineering Research and Design, 97, 36-44. doi:10.1016/j.cherd.2015.03.010Zaccariello, L., & Mastellone, M. (2015). Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal. Energies, 8(8), 8052-8068. doi:10.3390/en8088052Mac an Bhaird, S. T., Walsh, E., Hemmingway, P., Maglinao, A. L., Capareda, S. C., & McDonnell, K. P. (2014). Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material. Powder Technology, 254, 448-459. doi:10.1016/j.powtec.2014.01.049Kuo, J.-H., Wey, M.-Y., Lian, Y.-H., & Samaksaman, U. (2014). Gaseous organic emissions during air gasification of woody waste: effect of bed agglomeration/defluidization. Fuel Processing Technology, 128, 104-110. doi:10.1016/j.fuproc.2014.07.008Serrano, D., Sánchez-Delgado, S., Sobrino, C., & Marugán-Cruz, C. (2015). Defluidization and agglomeration of a fluidized bed reactor during Cynara cardunculus L. gasification using sepiolite as a bed material. Fuel Processing Technology, 131, 338-347. doi:10.1016/j.fuproc.2014.11.036Kittivech, T., & Fukuda, S. (2019). Investigating Agglomeration Tendency of Co-Gasification between High Alkali Biomass and Woody Biomass in a Bubbling Fluidized Bed System. Energies, 13(1), 56. doi:10.3390/en13010056Fanelli, E. (2020). CFD Hydrodynamics Investigations for Optimum Biomass Gasifier Design. Processes, 8(10), 1323. doi:10.3390/pr8101323Karatas, H., & Akgun, F. (2018). Experimental results of gasification of walnut shell and pistachio shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel, 214, 285-292. doi:10.1016/j.fuel.2017.10.061Meng, F., Ma, Q., Wang, H., Liu, Y., & Wang, D. (2019). Effect of gasifying agents on sawdust gasification in a novel pilot scale bubbling fluidized bed system. Fuel, 249, 112-118. doi:10.1016/j.fuel.2019.03.107Vijay Kumar, K., Bharath, M., Raghavan, V., Prasad, B. V. S. S. S., Chakravarthy, S. R., & Sundararajan, T. (2017). Gasification of high-ash Indian coal in bubbling fluidized bed using air and steam – An experimental study. Applied Thermal Engineering, 116, 372-381. doi:10.1016/j.applthermaleng.2017.01.102Aydar, E., Gul, S., Unlu, N., Akgun, F., & Livatyali, H. (2014). Effect of the type of gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of the Energy Institute, 87(1), 35-42. doi:10.1016/j.joei.2014.02.004Ren, J., Cao, J.-P., Zhao, X.-Y., Yang, F.-L., & Wei, X.-Y. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426. doi:10.1016/j.rser.2019.109426Koppatz, S., Pfeifer, C., & Hofbauer, H. (2011). Comparison of the performance behaviour of silica sand and olivine in a dual fluidised bed reactor system for steam gasification of biomass at pilot plant scale. Chemical Engineering Journal, 175, 468-483. doi:10.1016/j.cej.2011.09.071Yang, S., Zhou, T., Wei, Y., Hu, J., & Wang, H. (2019). Influence of size-induced segregation on the biomass gasification in bubbling fluidized bed with continuous lognormal particle size distribution. Energy Conversion and Management, 198, 111848. doi:10.1016/j.enconman.2019.111848Rasmussen, N. B. K., & Aryal, N. (2020). Syngas production using straw pellet gasification in fluidized bed allothermal reactor under different temperature conditions. Fuel, 263, 116706. doi:10.1016/j.fuel.2019.116706Xue, G., Kwapinska, M., Horvat, A., Kwapinski, W., Rabou, L. P. L. M., Dooley, S., … Leahy, J. J. (2014). Gasification of torrefied Miscanthus×giganteus in an air-blown bubbling fluidized bed gasifier. Bioresource Technology, 159, 397-403. doi:10.1016/j.biortech.2014.02.094Sarker, S., Bimbela, F., Sánchez, J. L., & Nielsen, H. K. (2015). Characterization and pilot scale fluidized bed gasification of herbaceous biomass: A case study on alfalfa pellets. Energy Conversion and Management, 91, 451-458. doi:10.1016/j.enconman.2014.12.034Zhou, T., Yang, S., Wei, Y., Hu, J., & Wang, H. (2020). Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier. Renewable Energy, 148, 534-547. doi:10.1016/j.renene.2019.10.059González-Vázquez, M., García, R., Pevida, C., & Rubiera, F. (2017). Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass. Energies, 10(3), 306. doi:10.3390/en10030306Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458-3470. doi:10.1016/j.energy.2006.03.008Muvhiiwa, R., Kuvarega, A., Llana, E. M., & Muleja, A. (2019). Study of biochar from pyrolysis and gasification of wood pellets in a nitrogen plasma reactor for design of biomass processes. Journal of Environmental Chemical Engineering, 7(5), 103391. doi:10.1016/j.jece.2019.103391Pio, D. T., Tarelho, L. A. C., Tavares, A. M. A., Matos, M. A. A., & Silva, V. (2020). Co-gasification of refused derived fuel and biomass in a pilot-scale bubbling fluidized bed reactor. Energy Conversion and Management, 206, 112476. doi:10.1016/j.enconman.2020.112476Aznar, M. P., Caballero, M. A., Sancho, J. A., & Francés, E. (2006). Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Processing Technology, 87(5), 409-420. doi:10.1016/j.fuproc.2005.09.006Cerone, N., Zimbardi, F., Contuzzi, L., Baleta, J., Cerinski, D., & Skvorčinskienė, R. (2020). Experimental investigation of syngas composition variation along updraft fixed bed gasifier. Energy Conversion and Management, 221, 113116. doi:10.1016/j.enconman.2020.113116Khezri, R., Wan Ab Karim Ghani, W. A., Awang Biak, D. R., Yunus, R., & Silas, K. (2019). Experimental Evaluation of Napier Grass Gasification in an Autothermal Bubbling Fluidized Bed Reactor. Energies, 12(8), 1517. doi:10.3390/en12081517Ge, H., Zhang, H., Guo, W., Song, T., & Shen, L. (2019). System simulation and experimental verification: Biomass-based integrated gasification combined cycle (BIGCC) coupling with chemical looping gasification (CLG) for power generation. Fuel, 241, 118-128. doi:10.1016/j.fuel.2018.11.091Kim, Y. D., Yang, C. W., Kim, B. J., Kim, K. S., Lee, J. W., Moon, J. H., … Lee, U. D. (2013). Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. Applied Energy, 112, 414-420. doi:10.1016/j.apenergy.2013.03.072Puig-Arnavat, M., Tora, E. A., Bruno, J. C., & Coronas, A. (2013). State of the art on reactor designs for solar gasification of carbonaceous feedstock. Solar Energy, 97, 67-84. doi:10.1016/j.solener.2013.08.001Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. doi:10.1016/j.rser.2014.07.129Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989-1003. doi:10.1016/j.rser.2017.03.112Marchelli, F., Curti, M., Tognin, M., Rovero, G., Moliner, C., Arato, E., & Bosio, B. (2020). Experimental Study on the Solids Residence Time Distribution in Multiple Square-Based Spouted Beds. Energies, 13(18), 4694. doi:10.3390/en13184694Guran, S. (2020). Thermochemical Conversion of Biomass. Practices and Perspectives in Sustainable Bioenergy, 159-194. doi:10.1007/978-81-322-3965-9_8Hernández, J. J., Lapuerta, M., & Barba, J. (2016). Separate effect of H 2 , CH 4 and CO on diesel engine performance and emissions under partial diesel fuel replacement. Fuel, 165, 173-184. doi:10.1016/j.fuel.2015.10.054Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030Montuori, L., Vargas-Salgado, C., & Alcázar-Ortega, M. (2015). Impact of the throat sizing on the operating parameters in an experimental fixed bed gasifier: Analysis, evaluation and testing. Renewable Energy, 83, 615-625. doi:10.1016/j.renene.2015.04.068Alfonso-Solar, D., Vargas-Salgado, C., Sánchez-Díaz, C., & Hurtado-Pérez, E. (2020). Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability, 12(21), 9300. doi:10.3390/su12219300Narváez, I., Orío, A., Aznar, M. P., & Corella, J. (1996). Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of the Produced Raw Gas. Industrial & Engineering Chemistry Research, 35(7), 2110-2120. doi:10.1021/ie9507540Siedlecki, M., De Jong, W., & Verkooijen, A. H. M. (2011). Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review. Energies, 4(3), 389-434. doi:10.3390/en4030389Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7(5), 285-292. doi:10.1016/0032-5910(73)80037-3Kumar, A., Jones, D., & Hanna, M. (2009). Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2(3), 556-581. doi:10.3390/en20300556“IMERYS” https://imerys-refractoryminerals.com/europe-cis-mena/products/molochite/Wen, C. Y., & Yu, Y. H. (1966). A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3), 610-612. doi:10.1002/aic.690120343Chirone, R., Poletto, M., Barletta, D., & Lettieri, P. (2020). The effect of temperature on the minimum fluidization conditions of industrial cohesive particles. Powder Technology, 362, 307-322. doi:10.1016/j.powtec.2019.11.102Lim, M. T., & Alimuddin, Z. (2008). Bubbling fluidized bed biomass gasification—Performance, process findings and energy analysis. Renewable Energy, 33(10), 2339-2343. doi:10.1016/j.renene.2008.01.014Gómez-Barea, A., Ollero, P., & Leckner, B. (2013). Optimization of char and tar conversion in fluidized bed biomass gasifiers. Fuel, 103, 42-52. doi:10.1016/j.fuel.2011.04.042Gómez-Barea, A., & Leckner, B. (2010). Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, 36(4), 444-509. doi:10.1016/j.pecs.2009.12.002Shi, L., & Northwood, D. O. (1995). The mechanical behavior of an aisi type 310 stainless steel. Acta Metallurgica et Materialia, 43(2), 453-460. doi:10.1016/0956-7151(94)00279-qLao, C., & Chungpaibulpatana, S. (2017). Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia, 138, 524-529. doi:10.1016/j.egypro.2017.10.23

    Assessment of the transversal competences: analysis and resolution of problems and, planning and time management

    Full text link
    [EN] European universities are in the process of experimenting with teaching by applying the new learning model according to the Bologna plan, based on specific and transversal competences. Due to the old teaching model, which is still rooted in the current learning system, professors have difficulties in assessing transversal competences. In this paper, the results of applying a methodology to assess the transversal competences: analysis and problem solving, and planning and time management is presented. Although the methodology is designed to evaluate transversal competences, it could also be used to evaluate traditional specific competences, in which the acquired technical knowledge is assessed. The methodology consists of explaining to the student how a practical problem is solved, applied to a case that an engineer can find in professional life. Subsequently, the student must solve another problem of the same type raised by the professor. The student will be given a limited time to solve the problem. The methodology is applied in two different sessions. The students have previously been informed about the performance of the test. Unlike the traditional method, the student must prepare the class before the lecture. Therefore, when the professor explains the theoretical part and how to solve the problem, it can also resolve doubts raised by the student during the preparation of the session. Additionally, the students who take less time to solve the test will have a higher score in the assessment of planning and time management. The results obtained are analysed and improvements are proposed to facilitate the acquisition of skills.Vargas Salgado, CA.; Bastida Molina, P.; Ribó Pérez, DG.; Alfonso Solar, D. (2020). Assessment of the transversal competences: analysis and resolution of problems and, planning and time management. Editorial Universitat Politècnica de València. 139-147. https://doi.org/10.4995/INN2019.2019.10112OCS13914

    Methodology to evaluate the feasibility of local biomass resources as a fuel for building boilers. Application to a Mediterranean area

    Full text link
    [EN] The massive implementation of distributed energy resources based on biofuels requires a complex methodology to assess the optimal energy valorization options and economic feasibility. This paper has focused on producing pellets for boilers. The work focuses on the residential and commercial sectors. To consume local biomass, it must be considered the availability of potential customers, biomass availability, properties, and dispersion to evaluate transport cost. The developed methodology was applied to three different counties of the Valencian Community (typical of Mediterranean areas). Biomass resources for different counties have been quantified and characterized regarding key issues as heating value and ash content. Considering every evaluated area (the typical total area in the range 600 to 1800 km2) as a biomass management unit, the impact of pellet production plant size and biomass transport costs for three different counties was evaluated. However, different balances between biomass resources availability and self-consumption potentials are obtained, the economic feasibility of pellet plants was acceptable in the three cases with payback periods from 5 to 6 years.Alfonso-Solar, D.; Vargas-Salgado, C.; Hurtado-Perez, E.; Bastida-Molina, P. (2022). Methodology to evaluate the feasibility of local biomass resources as a fuel for building boilers. Application to a Mediterranean area. Área de Innovación y Desarrollo,S.L. 21-29. http://hdl.handle.net/10251/181099S212

    Light electric vehicle charging strategy for low impact on the grid

    Full text link
    [EN] The alarming increase in the average temperature of the planet due to the massive emission of greenhouse gases has stimulated the introduction of electric vehicles (EV), given transport sector is responsible for more than 25% of the total global CO2 emissions. EV penetration will substantially increase electricity demand and, therefore, an optimization of the EV recharging scenario is needed to make full use of the existing electricity generation system without upgrading requirements. In this paper, a methodology based on the use of the temporal valleys in the daily electricity demand is developed for EVrecharge, avoiding the peak demand hours to minimize the impact on the grid. The methodology assumes three different strategies for the recharge activities: home, public buildings, and electrical stations. It has been applied to the case of Spain in the year 2030, assuming three different scenarios for the growth of the total fleet: low, medium, and high. For each of them, three different levels for the EV penetration by the year 2030 are considered: 25%, 50%, and 75%, respectively. Only light electric vehicles (LEV), cars and motorcycles, are taken into account given the fact that batteries are not yet able to provide the full autonomy desired by heavy vehicles. Moreover, heavy vehicles have different travel uses that should be separately considered. Results for the fraction of the total recharge to be made in each of the different recharge modes are deduced with indication of the time intervals to be used in each of them. For the higher penetration scenario, 75% of the total park, an almost flat electricity demand curve is obtained. Studies are made for working days and for non-working days.One of the authors was supported by the Generalitat Valenciana under the grant ACIF/2018/106.Bastida-Molina, P.; Hurtado-Perez, E.; Pérez Navarro, Á.; Alfonso-Solar, D. (2021). Light electric vehicle charging strategy for low impact on the grid. Environmental Science and Pollution Research. 28(15):18790-18806. https://doi.org/10.1007/s11356-020-08901-2S18790188062815Adnan, N., Nordin S. M., Rahman I., Amini M. H. (2017) A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV, Environmental Science and Pollution Research. Springer Verlag, 24(22), pp. 17955–17975. doi: https://doi.org/10.1007/s11356-017-9153-8AECC. (2018). Available at: http://www.aedecc.com/enlaces-de-interes/informacion-estadistica/ ()Ahmadi L, Croiset E, Elkamel A, Douglas P, Unbangluang W, Entchev E (2012) Impact of PHEVs penetration on Ontario’s electricity grid and environmental considerations. Energies 5(12):5019–5037. https://doi.org/10.3390/en5125019Akitt, J. W. (2018) Some observations on the greenhouse effect at the Earth’s surface, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Elsevier, 188, pp. 127–134. doi: https://doi.org/10.1016/J.SAA.2017.06.051Al-Alawi BM, Bradley TH (2013) Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies. Renew Sust Energ Rev 21:190–203. https://doi.org/10.1016/j.rser.2012.12.048Alhazmi YA, Mostafa HA, Salama MMA (2017) Optimal allocation for electric vehicle charging stations using trip success ratio. Int J Electr Power Energy Syst 91:101–116. https://doi.org/10.1016/j.ijepes.2017.03.009Bagher Sadati, S. M., Moshtagh J., Shafie-khah M., Rastgou A., Catalão J. P.S. (2019) Operational scheduling of a smart distribution system considering electric vehicles parking lot: a bi-level approach, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 159–178. doi: https://doi.org/10.1016/J.IJEPES.2018.08.021Baran, R. and Legey, L. F. L. (2013) The introduction of electric vehicles in Brazil: impacts on oil and electricity consumption, Technological Forecasting and Social Change. North-Holland, 80(5), pp. 907–917. doi: https://doi.org/10.1016/J.TECHFORE.2012.10.024Bjerkan, K. Y., Nørbech, T. E. and Nordtømme, M. E. (2016) Incentives for promoting battery electric vehicle (BEV) adoption in Norway, Transportation Research Part D: Transport and Environment. Pergamon, 43, pp. 169–180. doi: https://doi.org/10.1016/J.TRD.2015.12.002Canals Casals, L., Martinez-Laserna E., Amante García B., Nieto N. (2016) Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction, Journal of Cleaner Production. Elsevier, 127, pp. 425–437. doi: https://doi.org/10.1016/J.JCLEPRO.2016.03.120Ceballos Delgado, J. E., Caicedo Bravo, E. and Ospina Arango, S. (2016) A methodological proposal to measure the impact of electric vehicles on the electric grid, Ingeniería. Universidad Distrital Francisco José de Caldas, 21(2), pp. 154–175. doi: https://doi.org/10.14483/udistrital.jour.reving.2016.2.a03Clairand J-M, Rodríguez-García J, Álvarez-Bel C (2018) Electric vehicle charging strategy for isolated systems with high penetration of renewable generation. Energies 11(11):3188. https://doi.org/10.3390/en11113188Dang, Q. (2018) Electric vehicle (EV) charging management and relieve impacts in grids, 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems. doi: https://doi.org/10.1109/PEDG.2018.8447802Dang, Q. and Huo, Y. (2018) Modeling EV fleet load in distribution grids: a data-driven approach, in 2018 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, pp 720–724. doi: https://doi.org/10.1109/ITEC.2018.8450195Danté, A. W., Agbossou K., Kelouwani S., Cardenas A., Bouchard J. (2019) Online modeling and identification of plug-in electric vehicles sharing a residential station, International Journal of Electrical Power & Energy Systems. Elsevier, 108, pp. 162–176. doi: https://doi.org/10.1016/J.IJEPES.2018.12.024Deb S et al (2018) Impact of electric vehicle charging station load on distribution network. Energies 11(1):178. https://doi.org/10.3390/en11010178Desai RR, Chen RB, Armington W (2018) A pattern analysis of daily electric vehicle charging profiles: operational efficiency and environmental impacts. J Adv Transp 2018:1–15. https://doi.org/10.1155/2018/6930932DGT (2017) Vehicle fleet historical data base. Available at: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ ()DGT (2019) Traffic information. Available at: http://infocar.dgt.es/etraffic/ ()Dijk, M., Orsato, R. J. and Kemp, R. (2013) The emergence of an electric mobility trajectory, Energy Policy. Elsevier, 52, pp. 135–145. doi: https://doi.org/10.1016/J.ENPOL.2012.04.024Eurostat (2018) Database - Eurostat. Available at: https://ec.europa.eu/eurostat/web/lfs/data/database (Accessed: 2 August 2019)Galiveeti, H. R., Goswami, A. K. and Dev Choudhury, N. B. (2018) Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems, Engineering Science and Technology, an International Journal. Elsevier, 21(1), pp. 50–59. doi: https://doi.org/10.1016/J.JESTCH.2018.01.005Gong L et al (2018) Spatial and temporal optimization strategy for plug-in electric vehicle charging to mitigate impacts on distribution network. Energies 11(6):1373. https://doi.org/10.3390/en11061373Hasan, M. A., Frame D. J., Chapman R., Archie K. M. (2019) Emissions from the road transport sector of New Zealand: key drivers and challenges, Environmental Science and Pollution Research. Springer Verlag, 26(23), pp. 23937–23957. doi: https://doi.org/10.1007/s11356-019-05734-6IDAE (2012) Technological electric mobility map. Available at: http://www.idae.es/uploads/documentos/documentos_Movilidad_Electrica_ACC_c603f868.pdf (Accessed: 7 January 2019)INE (2018) Average distance covered by vehicles fleet. Available at: http://www.ine.es/jaxi/Tabla.htm?path=/t25/p500/2008/p10/l0/&file=10020.px&L=0 (Accessed: 30 December 2018)Limmer, S. and Rodemann, T. (2019) Peak load reduction through dynamic pricing for electric vehicle charging, International Journal of Electrical Power & Energy Systems. Elsevier, 113, pp. 117–128. doi: https://doi.org/10.1016/J.IJEPES.2019.05.031Liu Z, Wu Q, Nielsen A, Wang Y (2014) Day-ahead energy planning with 100% electric vehicle penetration in the Nordic Region by 2050. Energies 7(3):1733–1749. https://doi.org/10.3390/en7031733López, M. A., de la Torre S., Martín S., Aguado J.A. (2015) Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support, International Journal of Electrical Power & Energy Systems. Elsevier, 64, pp. 689–698. doi: https://doi.org/10.1016/J.IJEPES.2014.07.065Luca de Tena D, Pregger T (2018) Impact of electric vehicles on a future renewable energy-based power system in Europe with a focus on Germany. Int J Energy Res 42(8):2670–2685. https://doi.org/10.1002/er.4056Mao, D., Gao, Z. and Wang, J. (2019) An integrated algorithm for evaluating plug-in electric vehicle’s impact on the state of power grid assets, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 793–802. doi: https://doi.org/10.1016/J.IJEPES.2018.09.028Martínez-Lao, J. et al. (2017) Electric vehicles in Spain: an overview of charging systems, Renewable and Sustainable Energy Reviews. Pergamon. doi: https://doi.org/10.1016/J.RSER.2016.11.239.Morrissey, P., Weldon, P. and O’Mahony, M. (2016) Future standard and fast charging infrastructure planning: an analysis of electric vehicle charging behaviour, Energy Policy. Elsevier, 89, pp. 257–270. doi: https://doi.org/10.1016/J.ENPOL.2015.12.001Ortega-Vazquez MA, Bouffard F, Silva V (2013) Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans Power Syst 28(2):1806–1815. https://doi.org/10.1109/TPWRS.2012.2221750PNIEC (2019) Spanish climate change draft law. Available at: https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-consejo-de-ministros-da-luz-verde-al-anteproyecto-de-ley-de-cambio-climático-/tcm:30-487294 ()REE (2017a) Electrical demand, energy generation structure and CO2 emissions. Available at: https://demanda.ree.es/visiona/peninsula/demanda/total/2018-10-16 ()REE (2017b) Historical data base. Available at: https://www.ree.es/es/estadisticas-del-sistema-electrico-espanol/series-estadisticas/series-estadisticas-nacionales ()REE (2018) Electric mobility guide for local entities. Available at: https://www.ree.es/sites/default/files/downloadable/Guia_movilidad_electrica_para_entidades_locales.pdf (Accessed: 31 July 2019)Su, J., Lie, T. T. and Zamora, R. (2019) Modelling of large-scale electric vehicles charging demand: a New Zealand case study, Electric Power Systems Research. Elsevier, 167, pp. 171–182. doi: https://doi.org/10.1016/J.EPSR.2018.10.030Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Transactions on Smart Grid 3(1):26–37. https://doi.org/10.1109/TSG.2011.2168431Teixeira ACR, Sodré JR (2018) Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transportation Research Part D: Transport and Environment. Pergamon 59:375–384. https://doi.org/10.1016/J.TRD.2018.01.004Tietge, U., Díaz, S., et al. (2016a) From laboratory to road: a 2016 update of official and “real-world” fuel consumption and CO2 values for passenger cars in Europe, The International Council on Clean Transportation. Available at: https://theicct.org/publications/laboratory-road-2016-updateTietge, U., Mock, P., et al. (2016b) Real-world fuel consumption of popular European passenger car models | International Council on Clean Transportation, The International Council on Clean Transportation. Available at: https://www.theicct.org/publications/real-world-fuel-consumption-popular-european-passenger-car-modelsValsera-Naranjo E, Sumper A, Villafafila-Robles R, Martínez-Vicente D (2012) Probabilistic method to assess the impact of charging of electric vehicles on distribution grids. Energies. Molecular Diversity Preservation International 5(5):1503–1531. https://doi.org/10.3390/en5051503Wang, L. and Chen, B. (2019) Distributed control for large-scale plug-in electric vehicle charging with a consensus algorithm, International Journal of Electrical Power & Energy Systems. Elsevier, 109, pp. 369–383. doi: https://doi.org/10.1016/J.IJEPES.2019.02.020Wang Y, Infield D (2018) Markov chain Monte Carlo simulation of electric vehicle use for network integration studies. International Journal of Electrical Power & Energy Systems. Elsevier 99:85–94. https://doi.org/10.1016/J.IJEPES.2018.01.008Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. Journal of Energy Storage. Elsevier Ltd 21:618–631. https://doi.org/10.1016/j.est.2018.11.020Zhang, K. et al. (2019) Parameter identification and state of charge estimation of NMC cells based on improved ant lion optimizer, Mathematical Problems in Engineering, pp. 1–18. doi: https://doi.org/10.1155/2019/4961045Zhao X, Ma J, Wang S, Ye Y, Wu Y, Yu M (2018a) Developing an electric vehicle urban driving cycle to study differences in energy consumption. Environmental Science and Pollution Research. Springer Verlag 26(14):13839–13853. https://doi.org/10.1007/s11356-018-3541-6Zhao, X., Yu, Q., et al. (2018b) Development of a representative EV urban driving cycle based on a k-means and SVM hybrid clustering algorithm, Journal of Advanced Transportation, pp. 1–18. doi: https://doi.org/10.1155/2018/189075

    Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings

    Full text link
    [EN] Applications of renewable electricity in cities are mostly limited to photovoltaics, and they need other renewable sources, batteries, and the grid to guarantee reliability. This paper proposes a hybrid system, combining biomass and photovoltaics, to supply electricity to educational buildings. This system is reliable and provides at least 50% of electricity based on renewable sources. Buildings with small (70%) implies high electricity costs.This work was supported in part by the European Commission through project "Holistic And Scalable Solution For Research, Innovation And Education In Energy Tran project" (Agreement number: 837854). This work was supported in part by the European Commission through GROW GREEN project (Agreement number: 730283 - GROW GREEN-H2020-SCC-2016-2017/H2020-SCC-NBS-2stage-2016. http://growgreenproject.eu/). This work was completed in the framework of the activities of the Renewable Area research group of the IUIIE (Instituto Universitario de Investigación en Ingeniería Energética) in regional, national, and international projects. The authors deeply thank the Universitat Politècnica de València, IMPIVA-Generalitat Valenciana, the Spanish Ministry of Science and Technology, and the European Commission for the funded projects coming from this organization.Alfonso-Solar, D.; Vargas-Salgado Carlos; Sánchez-Diaz, C.; Hurtado-Perez, E. (2020). Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability. 12(21):1-14. https://doi.org/10.3390/su12219300S1141221Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030Prasad, M., & Munch, S. (2012). State-level renewable electricity policies and reductions in carbon emissions. Energy Policy, 45, 237-242. doi:10.1016/j.enpol.2012.02.024Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. doi:10.1016/j.esr.2019.01.006Bracco, S. (2020). A Study for the Optimal Exploitation of Solar, Wind and Hydro Resources and Electrical Storage Systems in the Bormida Valley in the North of Italy. Energies, 13(20), 5291. doi:10.3390/en13205291Directorate-General for Energy, EU Commission. Clean Energy for All Europeanshttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_enURLÓhAiseadha, C., Quinn, G., Connolly, R., Connolly, M., & Soon, W. (2020). Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018. Energies, 13(18), 4839. doi:10.3390/en13184839Hart, E. K., & Jacobson, M. Z. (2011). A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables. Renewable Energy, 36(8), 2278-2286. doi:10.1016/j.renene.2011.01.015Acevedo-Arenas, C. Y., Correcher, A., Sánchez-Díaz, C., Ariza, E., Alfonso-Solar, D., Vargas-Salgado, C., & Petit-Suárez, J. F. (2019). MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Conversion and Management, 186, 241-257. doi:10.1016/j.enconman.2019.02.044Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926-2939. doi:10.1016/j.rser.2012.02.009Bernal-Agustín, J. L., & Dufo-López, R. (2009). Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 13(8), 2111-2118. doi:10.1016/j.rser.2009.01.010Karakoulidis, K., Mavridis, K., Bandekas, D. V., Adoniadis, P., Potolias, C., & Vordos, N. (2011). Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system. Renewable Energy, 36(8), 2238-2244. doi:10.1016/j.renene.2010.12.003Kusakana, K. (2015). Optimal scheduled power flow for distributed photovoltaic/wind/diesel generators with battery storage system. IET Renewable Power Generation, 9(8), 916-924. doi:10.1049/iet-rpg.2015.0027Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 1072-1088. doi:10.1016/j.solener.2005.11.002Ipsakis, D., Voutetakis, S., Seferlis, P., Stergiopoulos, F., & Elmasides, C. (2009). Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. International Journal of Hydrogen Energy, 34(16), 7081-7095. doi:10.1016/j.ijhydene.2008.06.051Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270-282. doi:10.1016/j.buildenv.2014.06.013HOMER Energyhttps://www.homerenergy.com/Oladigbolu, J. O., Ramli, M. A. M., & Al-Turki, Y. A. (2020). Optimal Design of a Hybrid PV Solar/Micro-Hydro/Diesel/Battery Energy System for a Remote Rural Village under Tropical Climate Conditions. Electronics, 9(9), 1491. doi:10.3390/electronics9091491Hurtado, E., Peñalvo-López, E., Pérez-Navarro, Á., Vargas, C., & Alfonso, D. (2015). Optimization of a hybrid renewable system for high feasibility application in non-connected zones. Applied Energy, 155, 308-314. doi:10.1016/j.apenergy.2015.05.097Kebede, A. A., Berecibar, M., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., & Van Mierlo, J. (2020). A Techno-Economic Optimization and Performance Assessment of a 10 kWP Photovoltaic Grid-Connected System. Sustainability, 12(18), 7648. doi:10.3390/su12187648Hafez, O., & Bhattacharya, K. (2012). Optimal planning and design of a renewable energy based supply system for microgrids. Renewable Energy, 45, 7-15. doi:10.1016/j.renene.2012.01.087European Pellet Report. European Pellet Quality Certification (PELLCERT) project. PellCert. Published on April 2012https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/pellcert_european_pellet_report.pdf/Alfonso, D., Perpiñá, C., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology for optimization of distributed biomass resources evaluation, management and final energy use. Biomass and Bioenergy, 33(8), 1070-1079. doi:10.1016/j.biombioe.2009.04.002Perpiñá, C., Alfonso, D., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, 34(3), 555-565. doi:10.1016/j.renene.2008.05.047Technology Roadmap: Delivering Sustainable Bioenergyhttps://www.ieabioenergy.com/publications/technology-roadmap-delivering-sustainable-bioenergy/HOMER Pro 3.14 User Manualhttps://www.homerenergy.com/products/pro/docs/latest/index.htmlLao, C., & Chungpaibulpatana, S. (2017). Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia, 138, 524-529. doi:10.1016/j.egypro.2017.10.23

    The contribution of metropolitan areas to decarbonize the residential stock in Mediterranean cities: A GIS-based assessment of rooftop PV potential in Valencia, Spain

    Full text link
    [EN] Hundreds of cities worldwide have committed to decarbonizing or becoming carbon neutral by 2030, 2050, or even sooner. The challenge is particularly acute for the dense, compact cities of the European Mediterranean basin. To maximize their energy self-sufficiency, Mediterranean cities seek to scale up PV production within their boundaries and supply themselves from ground-mounted plants in their surroundings. This paper provides an alternative approach based on the energy exchange between cities and their metropolitan areas. The potential of the approach is demonstrated by the results attained under a less favorable (conservative) scenario: supplying the electricity demand of the residential stock exclusively with rooftop PV. Drawing on a combination of spatial analysis (based on cadastral and statistical data) and energy simulation (with HOMER), the approach is applied to Valencia, Spain's city and its metropolitan area. Results show that rooftop PV may increase the PV coverage rate from 61% (Valencia and its first metropolitan ring) to 79.2% (whole metropolitan area) - or about 30% in relative terms. This may encourage Mediterranean cities to develop innovative urban-metropolitan energy exchange models, hopefully under the criteria of spatial justice.This work has been supported by: Modelado, experimentacion y desarrollo de sistemas de gestion optima para microrredes hibridas renovables (CIGE/2021/172) . (01/01/22-31/12/23) . Investigacio'n competitiva proyectos. GENERALITAT VALENCIANA. Renewable Energies System For Cities RES4CITY (101075582) . (01/10/22-30/09/25) . HORIZON-CSA, EUROPEAN COMMISSION. Chair of Urban Energy Transition, UPV-Las Naves and Fundacio Valencia Clima i Energia, Ajuntament de Valencia, Spain.Cuesta-Fernandez, I.; Vargas-Salgado, C.; Alfonso-Solar, D.; Gómez-Navarro, T. (2023). The contribution of metropolitan areas to decarbonize the residential stock in Mediterranean cities: A GIS-based assessment of rooftop PV potential in Valencia, Spain. Sustainable Cities and Society. 97:1-12. https://doi.org/10.1016/j.scs.2023.1047271129

    Wind park reliable energy production based on a hydrogen compensation system. Part II: Economic study

    Full text link
    Power production from renewable energy resources is increasing day by day. In the case of Spain, in 2009 it represented 26.9% of installed power and 20.1% of energy production. Wind energy makes the most important contribution to this production. Wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties in submitting accurate generation schedules on a day-ahead basis, and in complying with scheduled obligations. Weather forecast systems have errors in their predictions depending on wind speed. Therefore, if wind energy becomes an important actor in the energy production system, these fluctuations could compromise grid stability. In the previous paper in this brief series [1], the authors showed technical results of the proposed solution, which consists of combining wind energy production with a biomass gasification system and a hydrogen generation system based on these two sources. In the present paper it is shown the economic results of the study, considering the most profitable technical configurations and three possible economic scenarios.Sánchez, C.; Hübner, S.; Abad Serra, B.; Alfonso-Solar, D.; Segura Heras, I. (2012). Wind park reliable energy production based on a hydrogen compensation system. Part II: Economic study. International Journal of Hydrogen Energy. 37(4):3088-3097. doi:10.1016/j.ijhydene.2011.10.1083088309737

    Supervisory Control And Data Acquisition system applied to a researching purpose microgrid based on Renewable Energy

    Full text link
    [EN] Control and data acquisition systems are required in researching facilities to analyze the behaviour of any process. In this paper, the results of the design and implementation of an automation and control system applied to a microgrid based on renewables energy are shown. The microgrid is located in the Laboratory for Distributed energy resources – LabDER at the Institute for Energy Engineering at UPV. The brain of the system is a PLC, programmed to carry out several tasks to guarantee the correct operation of the system. The measuring devices used are power meters, anemometer, temperature sensors and a solar cell to measure irradiance. The communication protocol used is Modbus TCP IP, Modbus RS-485 and Xanbus. All the information is centralized using a SCADA as an HMI. As a result, a robust control, and data acquisition system, able to manage a microgrid for researching purpose was obtained.The authors gratefully acknowledge to the Universitat Politècnica de València and the Instituto Universitario de Ingeniería Energética for their support to accomplish this work.Vargas Salgado, CA.; Águila León, J.; Chiñas Palacios, CD.; Alfonso Solar, D. (2021). Supervisory Control And Data Acquisition system applied to a researching purpose microgrid based on Renewable Energy. En Proceedings INNODOCT/20. International Conference on Innovation, Documentation and Education. Editorial Universitat Politècnica de València. 233-239. https://doi.org/10.4995/INN2020.2020.11898OCS23323
    corecore