Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings

Abstract

[EN] Applications of renewable electricity in cities are mostly limited to photovoltaics, and they need other renewable sources, batteries, and the grid to guarantee reliability. This paper proposes a hybrid system, combining biomass and photovoltaics, to supply electricity to educational buildings. This system is reliable and provides at least 50% of electricity based on renewable sources. Buildings with small (70%) implies high electricity costs.This work was supported in part by the European Commission through project "Holistic And Scalable Solution For Research, Innovation And Education In Energy Tran project" (Agreement number: 837854). This work was supported in part by the European Commission through GROW GREEN project (Agreement number: 730283 - GROW GREEN-H2020-SCC-2016-2017/H2020-SCC-NBS-2stage-2016. http://growgreenproject.eu/). This work was completed in the framework of the activities of the Renewable Area research group of the IUIIE (Instituto Universitario de Investigación en Ingeniería Energética) in regional, national, and international projects. The authors deeply thank the Universitat Politècnica de València, IMPIVA-Generalitat Valenciana, the Spanish Ministry of Science and Technology, and the European Commission for the funded projects coming from this organization.Alfonso-Solar, D.; Vargas-Salgado Carlos; Sánchez-Diaz, C.; Hurtado-Perez, E. (2020). Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability. 12(21):1-14. https://doi.org/10.3390/su12219300S1141221Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030Prasad, M., & Munch, S. (2012). State-level renewable electricity policies and reductions in carbon emissions. Energy Policy, 45, 237-242. doi:10.1016/j.enpol.2012.02.024Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. doi:10.1016/j.esr.2019.01.006Bracco, S. (2020). A Study for the Optimal Exploitation of Solar, Wind and Hydro Resources and Electrical Storage Systems in the Bormida Valley in the North of Italy. Energies, 13(20), 5291. doi:10.3390/en13205291Directorate-General for Energy, EU Commission. Clean Energy for All Europeanshttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_enURLÓhAiseadha, C., Quinn, G., Connolly, R., Connolly, M., & Soon, W. (2020). Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018. Energies, 13(18), 4839. doi:10.3390/en13184839Hart, E. K., & Jacobson, M. Z. (2011). A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables. Renewable Energy, 36(8), 2278-2286. doi:10.1016/j.renene.2011.01.015Acevedo-Arenas, C. Y., Correcher, A., Sánchez-Díaz, C., Ariza, E., Alfonso-Solar, D., Vargas-Salgado, C., & Petit-Suárez, J. F. (2019). MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Conversion and Management, 186, 241-257. doi:10.1016/j.enconman.2019.02.044Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926-2939. doi:10.1016/j.rser.2012.02.009Bernal-Agustín, J. L., & Dufo-López, R. (2009). Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 13(8), 2111-2118. doi:10.1016/j.rser.2009.01.010Karakoulidis, K., Mavridis, K., Bandekas, D. V., Adoniadis, P., Potolias, C., & Vordos, N. (2011). Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system. Renewable Energy, 36(8), 2238-2244. doi:10.1016/j.renene.2010.12.003Kusakana, K. (2015). Optimal scheduled power flow for distributed photovoltaic/wind/diesel generators with battery storage system. IET Renewable Power Generation, 9(8), 916-924. doi:10.1049/iet-rpg.2015.0027Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 1072-1088. doi:10.1016/j.solener.2005.11.002Ipsakis, D., Voutetakis, S., Seferlis, P., Stergiopoulos, F., & Elmasides, C. (2009). Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. International Journal of Hydrogen Energy, 34(16), 7081-7095. doi:10.1016/j.ijhydene.2008.06.051Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270-282. doi:10.1016/j.buildenv.2014.06.013HOMER Energyhttps://www.homerenergy.com/Oladigbolu, J. O., Ramli, M. A. M., & Al-Turki, Y. A. (2020). Optimal Design of a Hybrid PV Solar/Micro-Hydro/Diesel/Battery Energy System for a Remote Rural Village under Tropical Climate Conditions. Electronics, 9(9), 1491. doi:10.3390/electronics9091491Hurtado, E., Peñalvo-López, E., Pérez-Navarro, Á., Vargas, C., & Alfonso, D. (2015). Optimization of a hybrid renewable system for high feasibility application in non-connected zones. Applied Energy, 155, 308-314. doi:10.1016/j.apenergy.2015.05.097Kebede, A. A., Berecibar, M., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., & Van Mierlo, J. (2020). A Techno-Economic Optimization and Performance Assessment of a 10 kWP Photovoltaic Grid-Connected System. Sustainability, 12(18), 7648. doi:10.3390/su12187648Hafez, O., & Bhattacharya, K. (2012). Optimal planning and design of a renewable energy based supply system for microgrids. Renewable Energy, 45, 7-15. doi:10.1016/j.renene.2012.01.087European Pellet Report. European Pellet Quality Certification (PELLCERT) project. PellCert. Published on April 2012https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/pellcert_european_pellet_report.pdf/Alfonso, D., Perpiñá, C., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology for optimization of distributed biomass resources evaluation, management and final energy use. Biomass and Bioenergy, 33(8), 1070-1079. doi:10.1016/j.biombioe.2009.04.002Perpiñá, C., Alfonso, D., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, 34(3), 555-565. doi:10.1016/j.renene.2008.05.047Technology Roadmap: Delivering Sustainable Bioenergyhttps://www.ieabioenergy.com/publications/technology-roadmap-delivering-sustainable-bioenergy/HOMER Pro 3.14 User Manualhttps://www.homerenergy.com/products/pro/docs/latest/index.htmlLao, C., & Chungpaibulpatana, S. (2017). Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia, 138, 524-529. doi:10.1016/j.egypro.2017.10.23

    Similar works

    Full text

    thumbnail-image

    Available Versions