5,571 research outputs found

    Visco-hyperelastic model with damage for simulating cyclic thermoplastic elastomers behavior applied to an industrial component

    Get PDF
    In this work a nonlinear phenomenological visco-hyperelastic model including damage consideration is developed to simulate the behavior of Santoprene 101-73 material. This type of elastomeric material is widely used in the automotive and aeronautic sectors, as it has multiple advantages. However, there are still challenges in properly analyzing the mechanical phenomena that these materials exhibit. To simulate this kind of material a lot of theories have been exposed, but none of them have been endorsed unanimously. In this paper, a new model is presented based on the literature, and on experimental data. The test samples were extracted from an air intake duct component of an automotive engine. Inelastic phenomena such as hyperelasticity, viscoelasticity and damage are considered singularly in this model, thus modifying and improving some relevant models found in the literature. Optimization algorithms were used to find out the model parameter values that lead to the best fit of the experimental curves from the tests. An adequate fitting was obtained for the experimental results of a cyclic uniaxial loading of Santoprene 101-73

    Low-complexity motion estimation for the Scalable Video Coding extension of H.264/AVC

    Get PDF
    The recently standardized Scalable Video Coding(SVC) extension of H.264/AVC allows bitstream scalability with improved rate-distortion efficiency with respect to the classical Simulcasting approach, at the cost of an increased computational complexity of the encoding process. So one critical issue related to practical deployment of SVC is the complexity reduction, fundamental to use it in consumer applications. In this paper, we present a fully scalable fast motion estimation algorithm that enables an excellent complexity performance

    New Fast Search Algorithm for Base Layer of H.264 Scalable Video Coding Extension

    Get PDF
    In this contribution, a fast search motion estimation algorithm for H.264/AVC SVC (scalable video coding) [2] base layer with hierarchical B-frame structure for temporal decomposition is presented and compared with fast search motion estimation algorithm in JSVM software [1], that is the reference software for H.264/AVC SVC. The proposed technique is a block-matching based motion estimation algorithm working in two steps, called Coarse search and Fine search. The Coarse search is performed for each frame in display order, and for each 16x16 macroblock chooses the best motion vector at half pel accuracy. Fine search is performed for each frame in encoding order and finds the best prediction for each block type, reference frame and direction, choosing the best motion vector at quarter pel accuracy using R-D optimization. Both Coarse and Fine Search test 3 spatial and 3 temporal predictors, and add to the best one a set of updates. The spatial predictors for the fine search are the result of the Fine search already performed for the previous blocks, while the temporal predictors are the results of Coarse Search scaled by an appropriate coefficient. This scaling is performed since in the Coarse search each picture is always estimated with respect to the previous one, while in the Fine Search the temporal distance between the current picture and its references depend on the temporaldecomposition level. Moreover in Fine search the number and the value of the updates tested depend on the distance between the current picture and its references. These sets of updates are the result of a huge number of simulations on test sequences with different motion features. The proposed algorithm has been tested on the set of test sequences proposed by JVT group, using different resolutions and temporal decomposition structures. The proposed method can reduce the average coding complexity in terms of motion vector tested from 70 to 90 percent with respect to the Fast-ME JVT method, while the quality loss depends on the GOP dimension, that is the most critical parameter for the performance of the algorithm. In fact for small GOP dimensions (4 or 8) the algorithm has the same quality at equal bit-rate respect to the Fast-ME JVT method for almost all the sequences and better quality for some sequences. For medium and long GOP dimensions (16-32) the algorithm has a quality loss lower than 0.5 dB for all the tested sequences

    Confined photon modes with triangular symmetry in hexagonal microcavities in 2D photonic Crystals

    Get PDF
    We present theoretical and experimental studies of the size and thickness dependencies of the optical emission spectra from microcavities with hexagonal shape in films of two-dimensional photonic crystal. A semiclassical plane-wave model, which takes into account the electrodynamic properties of quasi-2D planar photonic microcavity, is developed to predict the eigenfrequencies of the confined photon modes as a function of both the hexagon-cavity size and the film thickness. Modes with two different symmetries, triangular and hexagonal, are critically analyzed. It is shown that the model of confined photon modes with triangular symmetry gives a better agreement between the predicted eigenmodes and the observed resonances.Comment: 14 pages, 6 figure

    Herschel PACS Spectroscopic Diagnostics of Local ULIRGs: Conditions and Kinematics in Mrk 231

    Full text link
    In this first paper on the results of our Herschel PACS survey of local Ultraluminous Infrared Galaxies (ULIRGs), as part of our SHINING survey of local galaxies, we present far-infrared spectroscopy of Mrk 231, the most luminous of the local ULIRGs, and a type 1 broad absorption line AGN. For the first time in a ULIRG, all observed far-infrared fine-structure lines in the PACS range were detected and all were found to be deficient relative to the far infrared luminosity by 1 - 2 orders of magnitude compared with lower luminosity galaxies. The deficits are similar to those for the mid-infrared lines, with the most deficient lines showing high ionization potentials. Aged starbursts may account for part of the deficits, but partial covering of the highest excitation AGN powered regions may explain the remaining line deficits. A massive molecular outflow, discovered in OH and 18OH, showing outflow velocities out to at least 1400 km/sec, is a unique signature of the clearing out of the molecular disk that formed by dissipative collapse during the merger. The outflow is characterized by extremely high ratios of 18O / 16O suggestive of interstellar medium processing by advanced starbursts.Comment: Accepted for publication in the Astronomy and Astrophysics Herschel Special Issue, 5 pages, 4 figure

    Spectroscopic FIR mapping of the disk and galactic wind of M82 with Herschel-PACS

    Full text link
    [Abridged] We present maps of the main cooling lines of the neutral atomic gas ([OI] at 63 and 145 micron and [CII] at 158 micron) and in the [OIII] 88 micron line of the starburst galaxy M82, carried out with the PACS spectrometer on board the Herschel satellite. By applying PDR modeling we derive maps of the main ISM physical parameters, including the [CII] optical depth, at unprecedented spatial resolution (~300 pc). We can clearly kinematically separate the disk from the outflow in all lines. The [CII] and [OI] distributions are consistent with PDR emission both in the disk and in the outflow. Surprisingly, in the outflow, the atomic and the ionized gas traced by the [OIII] line both have a deprojected velocity of ~75 km/s, very similar to the average velocity of the outflowing cold molecular gas (~ 100 km/s) and several times smaller than the outflowing material detected in Halpha (~ 600 km/s). This suggests that the cold molecular and neutral atomic gas and the ionized gas traced by the [OIII] 88 micron line are dynamically coupled to each other but decoupled from the Halpha emitting gas. We propose a scenario where cold clouds from the disk are entrained into the outflow by the winds where they likely evaporate, surviving as small, fairly dense cloudlets (n_H\sim 500-1000 cm^-3, G_0\sim 500- 1000, T_gas\sim300 K). We show that the UV photons provided by the starburst are sufficient to excite the PDR shells around the molecular cores. The mass of the neutral atomic gas in the outflow is \gtrsim 5-12x 10^7 M_sun to be compared with that of the molecular gas (3.3 x 10^8 M_sun) and of the Halpha emitting gas (5.8 x 10^6 M_sun). The mass loading factor, (dM/dt)/SFR, of the molecular plus neutral atomic gas in the outflow is ~ 2. Energy and momentum driven outflow models can explain the data equally well, if all the outflowing gas components are taken into account.Comment: 26 pages, 23 figures, 4 Tables, Accepted for publication in Astronomy & Astrophysic

    Dynamical laws of superenergy in General Relativity

    Full text link
    The Bel and Bel-Robinson tensors were introduced nearly fifty years ago in an attempt to generalize to gravitation the energy-momentum tensor of electromagnetism. This generalization was successful from the mathematical point of view because these tensors share mathematical properties which are remarkably similar to those of the energy-momentum tensor of electromagnetism. However, the physical role of these tensors in General Relativity has remained obscure and no interpretation has achieved wide acceptance. In principle, they cannot represent {\em energy} and the term {\em superenergy} has been coined for the hypothetical physical magnitude lying behind them. In this work we try to shed light on the true physical meaning of {\em superenergy} by following the same procedure which enables us to give an interpretation of the electromagnetic energy. This procedure consists in performing an orthogonal splitting of the Bel and Bel-Robinson tensors and analysing the different parts resulting from the splitting. In the electromagnetic case such splitting gives rise to the electromagnetic {\em energy density}, the Poynting vector and the electromagnetic stress tensor, each of them having a precise physical interpretation which is deduced from the {\em dynamical laws} of electromagnetism (Poynting theorem). The full orthogonal splitting of the Bel and Bel-Robinson tensors is more complex but, as expected, similarities with electromagnetism are present. Also the covariant divergence of the Bel tensor is analogous to the covariant divergence of the electromagnetic energy-momentum tensor and the orthogonal splitting of the former is found. The ensuing {\em equations} are to the superenergy what the Poynting theorem is to electromagnetism. See paper for full abstract.Comment: 27 pages, no figures. Typos corrected, section 9 suppressed and more acknowledgments added. To appear in Classical and Quantum Gravit

    A deep Herschel/PACS observation of CO(40-39) in NGC 1068: a search for the molecular torus

    Get PDF
    Emission from high-J CO lines in galaxies has long been proposed as a tracer of X-ray dominated regions (XDRs) produced by AGN. Of particular interest is the question of whether the obscuring torus, which is required by AGN unification models, can be observed via high-J CO cooling lines. Here we report on the analysis of a deep Herschel-PACS observation of an extremely high J CO transition (40-39) in the Seyfert 2 galaxy NGC 1068. The line was not detected, with a derived 3σ\sigma upper limit of 2×1017Wm22 \times 10^{-17}\,\text{W}\,\text{m}^{-2}. We apply an XDR model in order to investigate whether the upper limit constrains the properties of a molecular torus in NGC 1068. The XDR model predicts the CO Spectral Line Energy Distributions for various gas densities and illuminating X-ray fluxes. In our model, the CO(40-39) upper limit is matched by gas with densities 106107cm3\sim 10^{6}-10^{7}\,\text{cm}^{-3}, located at 1.65pc1.6-5\,\text{pc} from the AGN, with column densities of at least 1025cm210^{25}\,\text{cm}^{-2}. At such high column densities, however, dust absorbs most of the CO(40-39) line emission at λ=65.69μ\lambda = 65.69\, \mum. Therefore, even if NGC 1068 has a molecular torus which radiates in the CO(40-39) line, the dust can attenuate the line emission to below the PACS detection limit. The upper limit is thus consistent with the existence of a molecular torus in NGC 1068. In general, we expect that the CO(40-39) is observable in only a few AGN nuclei (if at all), because of the required high gas column density, and absorption by dust.Comment: 22 pages, accepted for publication in Ap

    Response of Spiking Neurons to Correlated Inputs

    Full text link
    The effect of a temporally correlated afferent current on the firing rate of a leaky integrate-and-fire (LIF) neuron is studied. This current is characterized in terms of rates, auto and cross-correlations, and correlation time scale τc\tau_c of excitatory and inhibitory inputs. The output rate νout\nu_{out} is calculated in the Fokker-Planck (FP) formalism in the limit of both small and large τc\tau_c compared to the membrane time constant τ\tau of the neuron. By simulations we check the analytical results, provide an interpolation valid for all τc\tau_c and study the neuron's response to rapid changes in the correlation magnitude.Comment: 4 pages, 3 figure

    The Non-thermal Radio Jet Toward the NGC 2264 Star Formation Region

    Full text link
    We report sensitive VLA 3.6 cm radio observations toward the head of the Cone nebula in NGC 2264, made in 2006. The purpose of these observations was to study a non-thermal radio jet recently discovered, that appears to emanate from the head of the Cone nebula. The jet is highly polarized, with well-defined knots, and one-sided. The comparison of our images with 1995 archive data indicates no evidence of proper motions nor polarization changes. We find reliable flux density variations in only one knot, which we tentatively identify as the core of a quasar or radio galaxy. An extragalactic location seems to be the best explanation for this jet.Comment: 12 pages, 5 figure
    corecore