97 research outputs found

    Nicotine metal complexes: synthesis, characterization and bioactivities of some main group and some transition metals

    Get PDF
    A number of some main group and transition metal nicotine complexes were synthesized and fully characterized using detailed structural and spectroscopic analysis techniques such as elemental analysis, molar conductivities, magnetic susceptibilities, IR, Raman and NMR techniques. Moreover, scanning electron micrographs and thermogravimetric analyses were also done. Cytotoxic activities of the binary nicotine metal complexes were tested and evaluated against HepG2 (human hepatocellular carcinoma), HPC3 (human prostate cancer), and HCT116 (human colorectal carcinoma) tumor cell lines. The antioxidant activities were examined by free radical scavenging assay. The antimicrobial activities of the synthesized complexes were evaluated against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) microbes. The relationship between the chemical structure of the synthesized complexes and their biological influence as antimicrobial drugs was studied and evaluated.                     KEY WORDS: Nicotine metal complexes, Cytotoxicity, Antioxidant, Antimicrobial   Bull. Chem. Soc. Ethiop. 2020, 34(3), 501-521. DOI: https://dx.doi.org/10.4314/bcse.v34i3.

    Bioactivities of holmium(III) and gadolinium(III) complexes of thymoquinone

    Get PDF
    Chemotherapeutic agents which are the main stay in cancer treatment are toxic with numerous contrary side effects. A number of chemical, physical, and computational techniques were applied to synthesize and elucidate the structural and functional characterization of the new designed bioligands and their metal complexes. Besides, several biological techniques for developing therapeutics and diagnostics agents of these new designed materials were used. The trivalent holmium(III) and gadolinium(III) metal complexes of thymoquinone (TQ) were synthesized. Toxicities and other bioactivites were undertaken with existing drug combinations and more effective tumor models will be established. The molecular structures of TQ-metal complexes were elucidated based on particular spectral approaches. The NF-kB (nuclear factor kappa-light-chain enhancer of activated B Cells) luciferase, elastase release, superoxide anion (O2•−) generation, and DPPH (1,1-diphenyl-2-picryl hydrazyl) free-radical scavenging activities of TQ and its synthesized complexes were elucidated and discussed. The core research is to use coordination and organometallic chemistry to design new bioligands and binary, ternary, mixed ligand, multi metal multi ligand complexes pursing a bio target continuously with structure-activity relationships (SARS).                     KEY WORDS: Thymoquinone, Holmium, Gadolinium, Bioactivities   Bull. Chem. Soc. Ethiop. 2021, 35(1), 87-96. DOI: https://dx.doi.org/10.4314/bcse.v35i1.

    Surgical Approaches to Congenital Anomalies of Esophagus

    Get PDF
    With prevalence of about 1 in 3000 live births, pediatric surgeons commonly deal with esophageal abnormalities, which may provide substantial clinical complications. Surprisingly, the embryologic processes underlying esophageal atresia (EA) with or without tracheoesophageal fistula (TEF), one of the hallmark disease entities of pediatric surgery, have only lately been largely uncovered. When it comes to the treatment of congenital esophageal abnormalities, notably esophageal atresia and tracheoesophageal fistula, surgical methods are essential. In order to address the anatomical abnormalities and restore normal function, surgical correction is often necessary in the care of congenital esophageal anomalies, including esophageal atresia and tracheoesophageal fistula. In this review we are going to cover surgical approaches to repair those malformations, long-term outcomes, and latest developments in esophageal surgical approaches

    Thyroid disorders, epidemiology and outcome among patients in South Western region: Southern Saudi Arabia

    Get PDF
    Background: Thyroid gland may have a group of a medical condition that affects its main function. The thyroid gland is located at the front of the neck and produces thyroid hormones. The released hormones go through the blood to many body organs for regulating their function, meaning that it is an endocrine organ. These hormones normally act in the body to regulate energy use, infant development, and childhood development. The study aimed to assess the epidemiology of thyroid disorders among cases in the south-western region, Saudi Arabia, and to assess the reporting quality for these cases data.Methods: A retrospective record based descriptive approach was used through reviewing medical records of all cases that were admitted and diagnosed as thyroid related disorders for different indications in the main hospital (king Khalid Hospital) during the period from January 2018 to January 2020. Data extracted throng pre-structured questionnaire including patient's bio-clinical data, preoperative radiological and laboratory investigations. Also, laryngoscope pre and post operatively was reviewed to record findings.Results: The study included 405 cases with thyroid disorders whose ages ranged from 15 to 71 years old with a mean age of 30.5±10.6 years. Females were 82.7% of the included cases, and 83.8% were Saudi. Thyroid related symptoms were recorded for 1-2 years among 58.1% of the cases and for more than 5 years among 15.8%. Thyroid enlargement was recorded for 73.1% of the cases. The multinodular enlargement was recorded for 53.5% of the cases followed with diffuse thyroid enlargement (27.3%). Regarding the type of surgery undergone, total thyroidectomy was the most recorded followed with lobectomy.Conclusions: The study revealed that the majority of the cases were females at middle age presented with benign lesions with Euthyroid status. The most important conclusion was the significant remarkable underreporting of the different clinical data for the cases with many missing items

    Exploration of Anti-HIV Phytocompounds against SARS-CoV-2 Main Protease: Structure-Based Screening, Molecular Simulation, ADME Analysis and Conceptual DFT Studies

    Get PDF
    The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than −8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of −10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (−10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski’s rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study.Fil: Murali, Mahadevamurthy. University Of Mysore; IndiaFil: Gowtham, Hittanahallikoppal Gajendramurthy. Nrupathunga University; IndiaFil: Shilpa, Natarajamurthy. University Of Mysore; IndiaFil: Krishnappa, Hemanth Kumar Naguvanahalli. University Of Mysore; IndiaFil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaFil: Jain, Anisha S.. University Of Mysore; IndiaFil: Shati, Ali A.. King Khalid University; Arabia SauditaFil: Alfaifi, Mohammad Y.. Vacsera Holding Company; EgiptoFil: Elbehairi, Serag Eldin I.. Jss Academy Of Higher Education And Research; IndiaFil: Achar, Raghu Ram. Pirogov Russian National Research Medical University; RusiaFil: Silina, Ekaterina. Universitat de Les Illesbalears; EspañaFil: Stupin, Victor. Centro de Investigaciónen Materiales Avanzados; MéxicoFil: Ortega Castro, Joaquín. Jss Academy Of Higher Education And Research; IndiaFil: Frau, Juan. Universitat de Les Illesbalears; EspañaFil: Flores Holguín, Norma. Centro de Investigaciónen Materiales Avanzados; MéxicoFil: Amruthesh, Kestur Nagaraj. University Of Mysore; IndiaFil: Shivamallu, Chandan. Jss Academy Of Higher Education And Research; IndiaFil: Kollur, Shiva Prasad. University Of Mysore; IndiaFil: Glossman Mitnik, Daniel. Centro de Investigaciónen Materiales Avanzados; Méxic

    Biallelic MFSD2A variants associated with congenital microcephaly, developmental delay, and recognizable neuroimaging features

    Get PDF
    Major Facilitator Superfamily Domain containing 2a (MFSD2A) is an essential endothelial lipid transporter at the blood-brain barrier. Biallelic variants affecting function in MFSD2A cause autosomal recessive primary microcephaly 15 (MCPH15, OMIM# 616486). We sought to expand our knowledge of the phenotypic spectrum of MCPH15 and demonstrate the underlying mechanism of inactivation of the MFSD2A transporter. We carried out detailed analysis of the clinical and neuroradiological features of a series of 27 MCPH15 cases, including eight new individuals from seven unrelated families. Genetic investigation was performed through exome sequencing (ES). Structural insights on the human Mfsd2a model and in-vitro biochemical assays were used to investigate the functional impact of the identified variants. All patients had primary microcephaly and severe developmental delay. Brain MRI showed variable degrees of white matter reduction, ventricular enlargement, callosal hypodysgenesis, and pontine and vermian hypoplasia. ES led to the identification of six novel biallelic MFSD2A variants (NG_053084.1, NM_032793.5: c.556+1G>A, c.748G>T; p.(Val250Phe), c.750_753del; p.(Cys251SerfsTer3), c.977G>A; p.(Arg326His), c.1386_1435del; p.(Gln462HisfsTer17), and c.1478C>T; p.(Pro493Leu)) and two recurrent variants (NM_032793.5: c.593C>T; p.(Thr198Met) and c.476C>T; p.(Thr159Met)). All these variants and the previously reported NM_032793.5: c.490C>A; p.(Pro164Thr) resulted in either reduced MFSD2A expression and/or transport activity. Our study further delineates the phenotypic spectrum of MCPH15, refining its clinical and neuroradiological characterization and supporting that MFSD2A deficiency causes early prenatal brain developmental disruption. We also show that poor MFSD2A expression despite normal transporter activity is a relevant pathomechanism in MCPH15

    In silico and in vivo evaluation of the anti-cryptosporidial activity of eugenol

    Get PDF
    BackgroundCryptosporidiosis is an opportunistic parasitic disease widely distributed worldwide. Although Cryptosporidium sp. causes asymptomatic infection in healthy people, it may lead to severe illness in immunocompromised individuals. Limited effective therapeutic alternatives are available against cryptosporidiosis in this category of patients. So, there is an urgent need for therapeutic alternatives for cryptosporidiosis. Recently, the potential uses of Eugenol (EUG) have been considered a promising novel treatment for bacterial and parasitic infections. Consequently, it is suggested to investigate the effect of EUG as an option for the treatment of cryptosporidiosis.Materials and methodsThe in silico bioinformatics analysis was used to predict and determine the binding affinities and intermolecular interactions of EUG and Nitazoxanide (NTZ) toward several Cryptosporidium parvum (C. parvum) lowa II target proteins. For animal study, five groups of immunosuppressed Swiss albino mice (10 mice each) were used. Group I was left uninfected (control), and four groups were infected with 1,000 oocysts of Cryptosporidium sp. The first infected group was left untreated. The remaining three infected groups received NTZ, EUG, and EUG + NTZ, respectively, on the 6th day post-infection (dpi). All mice were sacrificed 30 dpi. The efficacy of the used formulas was assessed by counting the number of C. parvum oocysts excreted in stool of infected mice, histopathological examination of the ileum and liver tissues and determination of the expression of iNOS in the ileum of mice in different animal groups.Resultstreatment with EUG resulted in a significant reduction in the number of oocysts secreted in stool when compared to infected untreated mice. In addition, oocyst excretion was significantly reduced in mice received a combination therapy of EUG and NTZ when compared with those received NTZ alone. EUG succeeded in reverting the histopathological alterations induced by Cryptosporidium infection either alone or in combination with NTZ. Moreover, mice received EUG showed marked reduction of the expression of iNOS in ileal tissues.ConclusionBased on the results, the present study signified a basis for utilizing EUG as an affordable, safe, and alternative therapy combined with NTZ in the management of cryptosporidiosis

    Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants

    Get PDF
    Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy

    Anti-inflammatory activity of d-pinitol possibly through inhibiting COX-2 enzyme: in vivo and in silico studies

    Get PDF
    Introduction: D-pinitol, a naturally occurring inositol, has diverse biological activities like antioxidant, antimicrobial and anticancer activities. This study aimed to evaluate anti-inflammatory effect of d-pinitol in a chick model. Additionally, in silico studies were performed to evaluate the molecular interactions with cyclooxygenase-2 (COX-2).Methods: The tested groups received d-pinitol (12.5, 25, and 50 mg/kg) and the standard drugs celecoxib and ketoprofen (42 mg/kg) via oral gavage prior to formalin injection. Then, the number of licks was counted for the first 10 min, and the paw edema diameter was measured at 60, 90, and 120 min.Results and Discussion: The d-pinitol groups significantly (p < 0.05) reduced the number of paw licks and paw edema diameters, compared to negative control. When d-pinitol was combined with celecoxib, it reduced inflammatory parameters more effectively than the individual groups. The in silico study showed a promising binding capacity of d-pinitol with COX-2. Taken together, d-pinitol exerted anti-inflammatory effects in a dose-dependent manner, possibly through COX-2 interaction pathway
    • …
    corecore