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ABSTRACT. Chemotherapeutic agents which are the main stay in cancer treatment are toxic with numerous 
contrary side effects. A number of chemical, physical, and computational techniques were applied to synthesize 
and elucidate the structural and functional characterization of the new designed bioligands and their metal 
complexes. Besides, several biological techniques for developing therapeutics and diagnostics agents of these new 
designed materials were used. The trivalent holmium(III) and gadolinium(III) metal complexes of thymoquinone 
(TQ) were synthesized. Toxicities and other bioactivites were undertaken with existing drug combinations and 
more effective tumor models will be established. The molecular structures of TQ-metal complexes were 
elucidated based on particular spectral approaches. The NF-kB (nuclear factor kappa-light-chain enhancer of 
activated B Cells) luciferase, elastase release, superoxide anion (O2•−) generation, and DPPH (1,1-diphenyl-2-
picryl hydrazyl) free-radical scavenging activities of TQ and its synthesized complexes were elucidated and 
discussed. The core research is to use coordination and organometallic chemistry to design new bioligands and 
binary, ternary, mixed ligand, multi metal multi ligand complexes pursing a bio target continuously with structure-
activity relationships (SARS). 
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INTRODUCTION 
 
At the present time, there is a tendency in searching for anticancer substances in the natural 
sources. These natural sources are usually supposed to be fewer toxic effects and produce 
negligible side effects [1, 2]. Medications from ordinary sources have been used conventionally 
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for thousands of ages in manyplaces of the world [3]. Experts have embattled
traditional or common drugs in similar of contemporary medicine to recognize and extract 
vigorous ingredients for the medication development
1,4-benzoquinone, Scheme 1), 
phytochemical compound found in black cumin (
use [5]. Clinical studies with thymoquinone
safety even up to a dose of 10 

Scheme 1. Molecular structure of TQ and its computer
 

The problem met in clinical trials concerning
levels in plasma and tissue as shown in most pharmacokinetics research work 
bioligand [11-22]. As well, it
absorbed. However, exploring other mechanism to improve the bioavailability of TQ especially 
chemical modelling may prove as a novel method
TQ makes poor formulation features. 
the pharmacokinetic difficulties of thymoquinone [23
promising and advanced approach to
extra various potential health benefits is the usage of metal ion
complex formation. Both holmium and gadolinium metals play no known biological role in 
biological processes, however,
metabolism in humans. Holmium and gadolinium form
soluble salts with fluorescent properties and toxic to mammals [26,
and gadolinium(III) chelates are far less toxic because th
and out of the body before the free ion can be released into the body tissues [26,
because of their paramagnetic 
complexes were used as intravenously
imaging contrast agents in medical 

The role of metal-ligand complex equilibria and the formation of bio
therapeutic research interest [28
such mechanism in overcoming TQ bioava
beings. However, the usage of TQ in humans is inadequate
poor membrane diffusion capability.
use of the formed metal bio-ligand as a novel alternative in overcoming problems encountered 
with TQ in biological system and its therapeutic application. Recently,
holmium(III) and gadolinium(III) metal ions
considered wherein, the protonation constant of thymoquinone and the complex stability 
constants of each binary metal complex between both this metal 
(TQ) were determined and stated
and complex stability constants of each metal complex classes in solutions were anticipated as 
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for thousands of ages in manyplaces of the world [3]. Experts have embattled numerous 
drugs in similar of contemporary medicine to recognize and extract 

vigorous ingredients for the medication development [4]. Thymoquinone (2-methyl-5-isopropyl
benzoquinone, Scheme 1), a monoterpene molecule is a most prominent constituent 

cal compound found in black cumin (Nigella sativa) with a long history of medicinal 
use [5]. Clinical studies with thymoquinone (TQ, Scheme 1) in humans had showed its general 

 mg/kg/day with individual few side possessions [6-10].  

Molecular structure of TQ and its computer-generated model. 

met in clinical trials concerning TQ is its poor bioavailability, leading to little 
levels in plasma and tissue as shown in most pharmacokinetics research work done in TQ 

22]. As well, it’s hydrophobic in nature, rapidly eliminated and slowly/poorly 
absorbed. However, exploring other mechanism to improve the bioavailability of TQ especially 
chemical modelling may prove as a novel method [11-22]. Furthermore, great lipophilicity of 
TQ makes poor formulation features. Numerous investigational studies have been done to avoid 
the pharmacokinetic difficulties of thymoquinone [23-25], and its contrary effect. An extremely 
promising and advanced approach to deal with the bioavailability matter and to realize even 
extra various potential health benefits is the usage of metal ion-TQ complex, forming a binary 
complex formation. Both holmium and gadolinium metals play no known biological role in 

, however, their salts and chelates were found to be able to stimulate 
Holmium and gadolinium forms trivalent ions occurring in water

soluble salts with fluorescent properties and toxic to mammals [26, 27]. Though, homium(III) 
and gadolinium(III) chelates are far less toxic because they carry metal ions over the kidneys
and out of the body before the free ion can be released into the body tissues [26, 27]. Moreover, 

 properties, solutions of chelated organic holmium and gadolinium 
intravenously directed gadolinium/holmium-based magnetic resonance 

in medical magnetic resonance imaging [26, 27]. 
ligand complex equilibria and the formation of bio-ligand complex is of 

[28-30]. To our knowledge, no work had been reported in using 
such mechanism in overcoming TQ bioavailability problem. TQ had shown to be safe in human 
beings. However, the usage of TQ in humans is inadequate owing to its chemical properties and 

capability. The present study will have aimed at unfolding the possible 
ligand as a novel alternative in overcoming problems encountered 

with TQ in biological system and its therapeutic application. Recently, The stability constant
holmium(III) and gadolinium(III) metal ions-thymoquinone ligand complexation 

wherein, the protonation constant of thymoquinone and the complex stability 
constants of each binary metal complex between both this metal ions and thymoquinone ligand 
(TQ) were determined and stated [31]. The hypothetical calculations of the global dissociation 
and complex stability constants of each metal complex classes in solutions were anticipated as 
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the free energy change concomitant with the ligand protonation, dissociation, and metal ion-TQ 
complex process equilibria by means of density function theory (DFT) designs. The G values 
established that TQ form complex classes bind both metal ions and turns as chelating ligand. 
Moreover, the formation of diverse thymoquinone-holmium(III) and gadolinium(III) metal 
complex systems was established to be spontaneous process and exothermic interaction [31]. In 
this study, a structural characterization of the synthesized thymoquinone-holmium(III) and 
gadolinium(III) metal complexes was considered. Studying the antioxidant and antitumor 
relevance of holmium and gadolinium metal ion complexes of thymoquinone using cytotoxic 
and free radical scavenging assays was achieved. 
 

EXPERIMENTAL 
 

Chemicals and reagents 
 
All the chemical substances, supplies, and organic solvents used during this research work were 
of analytical chemical grade and were used without additional purifications such as 
thymoquinone (Sigma-Aldrish, USA). This TQ material was assessed in triplicate by titration by 
a carbonate-free solution of standard NaOH chemical substance [31]. This test showed that the 
mass fraction purity of it was (0.99 ± 0.05). Holmium(III) nitrate pentahydrate (Ho(NO3)3.5H2O; 
99.99% trace metals basis), and gadolinium(III) nitrate hexahydrate (Gd(NO3)3·6H2O; 99.999% 
trace metals basis) were used supplied from Sigma-Aldrich, USA. The organic solvents, 
methanol, ethanol, ether were of high purity.  
 
Synthesis of HoTQ and GdTQ metal complexes 
 
Holmium(III) and gadolinium(III) TQ complexes were created according to the next common 
procedure: An methanolic aliquots (20 mL) of each metal compound salts was added slowly in 
minor quantities to magnetically stirred methanolic aliquots (20 mL) of TQ till the reaction 
finished and refluxed at temperature of around 185 oC for 6 h. At that time, dehydration by pass 
in the subsequent reaction mixture in closet gases room, resulting in the isolation of solid 
precipitated complex yields. Then, they were filtered off, washed carefully using diethyl ether 
and ethanol solution mixture numerous times to eliminate any traces of unreacted starting 
ingredients and lastly dried in a vacuum desiccator over fused CaCl2 (final yield: 35-55%). 
Digital Elico Conductivity Bridge meter (Model No. CM-180) was used to measure the molar 
conductance of the TQ bioligand and its holmium and gadolinium metal-TQ complexes in 
DMSO organic solutions with a concentration of about 1 × 10−3 mol.dm-3 at room temperature 
by means of a dip-type conductivity cell tailored with a platinum electrode. Vibration infrared 
spectral (IR) studies of all prepared complexes were verified on a Shimadzu FT-IR 8000 
spectrophotometer by means of KBr disc medium in the range 400–4000 cm−1 and the spectra 
were collected with a resolution of 2 cm−1 with 15 scans [32].  
 
Cellular bioactivities of the synthesized metal complexes 
 
NF-kB luciferase assay using HSC-T6 C cells 
 
HSC-T6 Cells (around 7.5×104 cells/well) were sowed in 24-well micro plates with Fetal 
Bovine Serum (FBS) free medium at 37 °C for one day earlier transfection. Transfection was 
achieved with transfection reagent FuGENE®6 transfection reagent (Promega, Madison, USA) 
rendering to manufacturer's conditions. NFκB-Luc reporter construct (1.2 µg/well) (Cayman 
Chemical, Michigan, USA) was added to the cells along with plasmid cytomegalovirus-β-
galactosidase (CMV-β-gal, 0.22 µg/well; Promega, Madison, USA) and transfection reagent (20 
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µL/24-well plate). CMV-β-gal helped as an internal control to regularize the transfection 
efficacy. Subsequently, one day incubation, cell cultures were preserved with tested compounds 
(TQ bioligand, HoTQ, and GdTQ metal complexes) for half hour. Lipopolysaccharides (LPS) 
was then added to motivate NF-κB activity for 6 h. Cell lysates were harvested with diluted 
reporter lysis 5X buffer (Promega, Madison, USA). 24-well plates were added reporter lysis 
buffer (100 µL/well), and each 20 µL cell lysate assorted with 100 µL luciferin in 96-well 
plates. Luminescence was identified by microplate lumimometer multilabel counter (Titertek-
Berthold, Pforzheim, Germany) [33, 34]. 
 
Elastase release estimation 
 
Experimens were done using MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide as elastase substrate. In 
brief, afterward supplementation with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide (100 μM), 
neutrophils (6 × 105/mL) were equilibrated at 37 °C for 2 min and incubated with TQ bioligand 
and its metal complexes for 10 min. The cells were stimulated using formyl-l-methionyl-l-
leucyl-l-phenylalanine (FMLP) (100 nM) and cytochalasin B (CB) (0.5 μg/mL). The variations 
in absorbance at ca. 405 nm (p-nitrophenol) were instently measured to detect elastase release. 
The results are stated as a percentage of the original rate of elastase release in the formyl-l-
methionyl-l-leucyl-l-phenylalanine (FMLP)/cytochalasin B (CB)-activated, drug free control 
arrangements. To test whether the TQ bioligand and its metal complexes display an inhibitory 
ability to elastase activity, a direct elastase activity assay was done in a cell-free system. 
Neutrophils (6×105/mL) were incubated for 20 min with formyl-l-methionyl-l-leucyl-l-
phenylalanine (FMLP) (100 nM) and cytochalasin B (CB) (2.5 μg/mL) at 37 °C. After that, cells 
were centrifuged at 1,000 g for 7 min at 4 °C to collect the elastase from the supernatant. Then, 
the supernatant was equilibrated at 37 °C for 5 min and incubated with or without TQ bioligand 
and its metal complexes for 10 min. Then, the elastase substrate, MeO-Suc-Ala-Ala-Pro-Val-p-
nitroanilide (100 μM), was added to the reaction blends. Deviations in absorbance at 405 nm 
were incessantly detected for 10 min to evaluate the elastase activity [35-36]. 
 
Measurement of superoxide anion (O2•−) generation 
 
The evaluation of O2

•− generation was done using the superoxide dismutase (SOD) inhabitable 
reduction of ferricytochrome C. Briefly, once supplementation with 0.5 mg/mlferricytochrome 
C and 1 mM Ca2+, neutrophils ((4 or 10) × 105  μg/mL) were equilibrated at 37 °C for about 
2 min and incubated with TQ bioligand and its metal complexes for 10 min. Cells were initiated 
with formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP) (100 nM) for 10 min. for 5 min. 
When formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP) was used as a stimulant, 
cytochalasin B (CB) (1 μg/mL) was incubated for 5 min. Before activation by the peptide 
(FMLP/CB), superoxide anion(O2

•−) generation by isolated neutrophil fractionation was detected 
after the addition of 160 μM NADPH to 800 μL of relaxation buffer having 4 × 106 cell 
equivalents of membrane extract, 1.2 × 107 cell equivalents of cytosol, 2 μM GTP-γ-S, 
0.5 mg/mL ferricytochrome C, and 100 μM sodium dodecyl sulfate. To make informal the 
association of NADPH oxidase components, all ingredients (without NADPH) were incubated 
at 37 °C for 5 min earlier the addition of NADPH. TQ bioligand and its metal complexes were 
incubated for 2 min before NADPH oxidase assemblage. Variations in absorbance with the 
reduction of ferricytochrome C at 550 nm were constantly detected. Calculations were done 
based on alterations in the reactions with and without superoxide dismutase (SOD, 100 U/ mL) 
divided by the extinction coefficient for the reduction of ferricytochromec (ɛ = 
2.11 mM−1 mm−1) [37]. 
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DPPH radical scavenging activities 
 
Antioxidant influence of the tested compounds were established using the stable radical, 2,2-
diphenyl-1-picrylhydrazyl-hydrate (DPPH). All tested complex species were prepared in a 
mixture of neutral saline and DMSO. Around 50 μL of each tested compound was retained in 
1 cm cuvettes plus 2 mL methanolic mixtures of DPPH were added. At that time absorbance 
was detected. The reduction in absorbance was detected at 517 nm continually with data 
acquirement at 2 s intervals till the absorbance eased. The DPPH absorbance radical without the 
tested samples (control) was stately every 24 hours. Unusual maintenance was taken in 
consideration to diminish the loss of free radical activity of the DPPH radical standard solution 
as suggested. All experiments were done in triplicate. The percentage inhibition of the DPPH 
radical by gallate solution as standard antioxidant material and all tested compounds and their 
unique TQ bioligands was calculated based on the following equation:  Percent inhibition = 
([AC(0) – AC(t)] / [AC(0)]) × 100, where AC(0) is the absorbance detected of the control at t = 0 min 
and AA(t) is the absorbance detected of the reaction solution mixture at t = 16 min [38]. 
 
Statistical analysis 
 
The investigational data were statistically evaluated by a parametric two tailed t test, and 
calculated probability p values less than 0.05 were found to be a statistically significant. Once 
more than two investigational sets were examined, an ANOVA test by means of SPSS 17.0 
statistical package was similarly used to estimate the statistical significance data.  
 

RESULTS AND DISCUSSION 
 

Physical and chemical characterizations of synthesized complexes 
 
TQ bioligand, as well as its Ho(III), and Gd(III) complexes were exposed to elemental analysis. 
The elemental chemical and physical analytical data of the complexes showed 1:2 molar ratio 
(Ho/Gd : TQ). The synthesized complexes have melting points above 300 °C. The molar 
conductivity values for the synthesized complexes (1.0 × 10−3 mol/mL) were found to be 
between 32 and 51 Ω−1cm2mol−1 indicating lightly electrolytic nature, and providing the degree 
of ionization of the complexes due to the existence of nitrate ions inside the coordination sphere 
which powerfully maintained with the elemental analysis data. The magnetic susceptibilities 
(µeff) of the Ho(III) and Gd(III)-TQ ligand complexes at 25 oC were found to be reliable with 
noticeable low-spin diamagnetism. The revelation of molecular structures of the prepared 
Ho(III) and Gd(III)-TQ ligand complexes were supported by IR spectroscopic technique. The 
prepared Ho(III) and Gd(III)-TQ ligand complexes were found to be stable at 25 oC with two 
diverse colors (Figure 2), wherein they are partially soluble in D2O, while, they are soluble in 
DMSO and DMF organic solvents. The IR spectrum (Figure 1) showed a characteristic 
stretching band of the carbonyl group of a cyclohexadiene is observed at the wavenumber 1650 
cm-1. The band presented at 2967 cm-1 relates to the C-H stretching of aliphatic functional 
groups. The fragile wide band observed at a higher wavenumber (about 3040 cm-1) was assigned 
to the vinylic C-H in the C = C-H groups. The C = C stretching bands (1640-1675 cm-1) in 1,4-
cyclohexadiene cannot be definitely recognized because the strong carboxylic stretching bands 
in thymoquinone is existing in this frequency range. Careful inspection of the IR spectra of free 
TQ bioligand and their the Ho(III) and Gd(III)-TQ ligand complexes was done in order to 
simplify the obligation of these bands in the free TQ bioligand and its holmium and gadolinium 
complexes (Figure 1). 
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Figure 1. IR spectrum of TQ bioligand and its holmium (HoTQ), and gadolinium (GdTQ). 
 
NF-kB luciferase assay using HSC-T6 cells 
 
The inhibitory effects of the tested TQ and its complexes were evaluated on inflammatory HSC-
T6. The most active compound was found to be TQ compound, followed by compounds 
Ho(TQ), then Gd(TQ) with inhibitory activity (%) equals to 28.4, 14.2, and 13.2, respectively, 
against HSC-T6 (Table 1). Numerous experimental methods including immunoblot analysis, 
luciferase reporter gene assay, enzyme assay, over expression of target gene, and 
immunoprecipitation analysis confirmed that TQ targets interleukin-1 receptor-associated kinase 
1 (IRAK1), which is complicated in the activation of together activator protein AP-1 and 
nuclear factor NF-κB [39]. Furthermore, TQ instantaneously inhibited the induction of both NF-
κB- and AP-1-driven luciferase activities [40]. The present results could suggest that several 
enzymes involved in the induction of the NF-κB and AP-1 pathways are targeted by TQ as well 
its Ho and Gd metal complexes. 
 
Table 1. Inhibitory ratio of TQ bioligand and its metal complexes on inflammatory HSC-T6cells. 

 
Tested compound Silymarin 

(5 μg/mL) 
INF-α 

(5 μg/mL) 
TQ  

(25 μg/mL) 
HoTQ 

(50 μg/mL) 
GdTQ 

(50 μg/mL) 
Light intensity 39 109 81 59 43 
Inhibitory activity (%) 87 0 28.4 14.2 13.2 

 
Elastase release estimation and detection of superoxide anion (O2•−) generation  
 
Herein, the inhibitory effects of the TQ bioligand and its metal complexes were assessed on 
superoxide dismutase (SOD) and elastase release in human neutrophils and gadolinium(III)-TQ 
complex showed a moderate activity against the inhibition of superoxide anion generation 
(Table 2) against the inhibition of superoxide anion generation. TQ-holmium(III) complex 
showed a strong inhibitory effect against elastase release in stimulated human neutrophils. 
While, TQ and its gadolinium(III) complex showed a moderate inhibitory effect (Table 2) 
against elastase release in stimulated human neutrophils. Previous in vivo studies demonstrated 
that thymoquinone (TQ), a lipid soluble benzoquinone is a bioflavonoid managing 
inflammatory‐associated diseases in which it reduces articular elastase and myeloperoxidase 
(MPO) activities, and suppresses the expression of pro‐inflammatory cytokines [41].  
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Table 2. Inhibitory effects of TQ bioligand and its metal complexes on superoxide anion generation and 
elastase release in FMLP/CB induced human neutrophils. 

 
Tested 
compounds 

Superoxide anion Elastase release Superoxide anion Elastase release 
IC50 (μg/mL) Inhibitory % 

TQ 1.13±0.12 26.67a±0.57 15.37a±0.74 12.36b±0.57 
HoTQ 1.64±0.11 1.80±0.13 79.56c±2.10 99.55c±3.72 
GdTQ 16.23b±0.34 105.84c±3.15 20.09b±1.13 6.32±0.78 

aPercentage of inhibition (Inhibitory %) at 10 mg/mL concentration. Results are presented as mean ± S.E.M. (n = 
34).  ap < 0.05, bp < 0.01, cp < 0.001 compared with the control value (DMSO).  

 
DPPH free-radical scavenging test 
 
Antioxidant activity is unique of the significant standard tests in pharmaceutical industry to 
inspect the potency of a tested compound to inhibit the creation of free radical. 2,2-Diphenyl-1-
picrylhydrazyl (DPPH) is a general “steady free-radical” for antioxidant test. The vigorous 
DPPH radical has a robust absorption band at 517 nm with a violet color in solution. The 
neutralization of DPPH by each antioxidant tested compound gives band at 517 nm to decline 
and each solution color develops pale yellow color. From the results obtained for the tested 
compounds, it was found all TQ complexes showed an antioxidant activity (Figure 2). The 
cytochrome C system turned out to be inappropriate for the assessment of the antioxidant 
activity of thymoquinone. Thymoquinone concentration-dependently (250–2000 ppm) 
stimulated the NADH oxidation of submitochondrial particles in which he thymoquinone-
stimulated NADH oxidation was sensitive to inhibitors of the mitochondrial electron transfer 
[42]. Generally, thymoquinone possesses a moderate antioxidant activity assuming that the 
mitochondrial respiratory chain is significant for the antioxidant properties of thymoquinone in 
the cell in contrast to tis Ho and Gd metal complexes. 
 

 
 

Figure 2. DPPH scavenging activity of TQ bioligand and its metal complexes comparing with 
vitamin C. 
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CONCLUSION 
 

The present study aimed at unfolding the possible usage of the formed bio-ligand metal 
complexes as a novel alternative in overcoming problems encountered with thymoquinone in 
biological system and its therapeutic application. Thymoquinone had shown to be safe in human 
beings. However, the use of thymoquinone in humans is limited due to its chemical properties 
and poor membrane penetration capacity. Thymoquinone is chemically hydrophobic, which 
causes its poor solubility, and thus bioavailability. Many experimental studies have been 
conducted to overcome the pharmacokinetic problems of thymoquinone, its adverse effect. A 
highly promising and innovative approach to deal with the bioavailability issue and to achieve 
even more diverse potential health benefits is the use of metal thymoquinone complex, forming 
a complex formation. Yet, discovering other mechanism to increase the bioavailability of 
thymoquinone particularly chemical modelling may show as a novel method. The role of metal-
ligand complex equilibrium and the formation of bio-ligand complex are of therapeutic interest 
in this study. 
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