2,444 research outputs found

    Panel: Transportation Without Regulation

    Get PDF

    Multimodal models of animal sex in scientific literature: breaking binaries leads to a better understanding of ecology and evolution

    Get PDF
    ‘Sex’ is often used to describe a suite of phenotypic and genotypic traits of an organism related to reproduction. However, not all these traits are necessarily linked, and the rhetorical collapse of variation into a single term elides much of the complexity inherent in reproductive phenotypes. We conducted a meta-analysis of scientific literature to investigate how terminology related sexual phenotypes changes over time. We find that the conflation of gender and sex has increased, and there is a mammalian bias in this conflation. We highlight how a more inclusive and expansive framework for sex can clarify studies of sexual diversity

    Partner smoking and maternal cotinine during pregnancy: Implications for negative control methods

    Get PDF
    AbstractBackgroundComparison of the associations of maternal and mother's partner smoking with offspring outcomes is, in theory, a useful method for assessing whether there may be an intrauterine effect of tobacco exposure on these outcomes. However, this approach assumes that the effects of passive smoking from exposure to partner smoking during pregnancy are minimal. We evaluated this assumption using a biochemical measure of tobacco exposure in pregnant women.MethodsCotinine levels taken during the first trimester of pregnancy were measured in a sample of 3928 women from the Avon Longitudinal Study of Parents and Children. Median cotinine values were compared across categories of smoking heaviness (cigarettes per day) of the women during the first trimester and in non-smoking women by the smoking heaviness of their partner.ResultsCotinine levels were substantially higher in women who smoked compared to non-smokers (range of medians across smoking heaviness categories: 900–5362ng/ml versus 20ng/ml, interquartile range (IQR) (0–63) for non-smokers). In contrast, cotinine levels in non-smoking women were only very weakly related to partner smoking status (range of medians in women with smoking partners: 34–69ng/ml versus 12ng/ml, IQR (0–48) in women with non-smoking partners).ConclusionsLevels of tobacco exposure from partner smoking, as assessed by cotinine, were low in non-smoking pregnant women. This suggests that using mother's partner's smoking as a negative control for investigating intrauterine effects is valid

    Carotid Body-Mediated Chemoreflex Drive in The Setting of low and High Output Heart Failure.

    Get PDF
    Enhanced carotid body (CB) chemoreflex function is strongly related to cardiorespiratory disorders and disease progression in heart failure (HF). The mechanisms underlying CB sensitization during HF are not fully understood, however previous work indicates blood flow per se can affect CB function. Then, we hypothesized that the CB-mediated chemoreflex drive will be enhanced only in low output HF but not in high output HF. Myocardial infarcted rats and aorto-caval fistulated rats were used as a low output HF model (MI-CHF) and as a high output HF model (AV-CHF), respectively. Blood flow supply to the CB region was decreased only in MI-CHF rats compared to Sham and AV-CHF rats. MI-CHF rats exhibited a significantly enhanced hypoxic ventilatory response compared to AV-CHF rats. However, apnea/hypopnea incidence was similarly increased in both MI-CHF and AV-CHF rats compared to control. Kruppel-like factor 2 expression, a flow sensitive transcription factor, was reduced in the CBs of MI-CHF rats but not in AV-CHF rats. Our results indicate that in the setting of HF, potentiation of the CB chemoreflex is strongly associated with a reduction in cardiac output and may not be related to other pathophysiological consequences of HF

    MAKER: Twisted Sister Rover

    Full text link
    The Twisted Sister is a four-wheel mobile robot that can twist its front wheels to navigate the rough terrains. Each wheel is driven by a DC motor. The front wheels can be raised by a DC gearmotor which is connected to a worm gear system. The rover chassis is made of sheet metal cut from water jet. An Arduino robot controller is mounted on the Twisted Sister Rover. A remote controller is equipped with two tiny joysticks. One joystick is used to control the movement of the rover and the other joystick to used to either raise or lower the front wheels. Wireless communication is through Xbee radio modules, one mounted on the rover and one mounted on the remote controller. The project teaches the students on how to integrate mechanical design, electronic design, and software design (programming) into producing new products. It helps the students to realize the importance of hands-on multidisciplinary approach to product design

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy.

    Get PDF
    Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High- resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, eluci- dating mechanisms that may underlie genetic susceptibility to heart failure in human populations

    Projections of temperature-attributable premature deaths in 209 U.S. cities using a cluster-based Poisson approach

    Get PDF
    Background A warming climate will affect future temperature-attributable premature deaths. This analysis is the first to project these deaths at a near national scale for the United States using city and month-specific temperature-mortality relationships. Methods We used Poisson regressions to model temperature-attributable premature mortality as a function of daily average temperature in 209 U.S. cities by month. We used climate data to group cities into clusters and applied an Empirical Bayes adjustment to improve model stability and calculate cluster-based month-specific temperature-mortality functions. Using data from two climate models, we calculated future daily average temperatures in each city under Representative Concentration Pathway 6.0. Holding population constant at 2010 levels, we combined the temperature data and cluster-based temperature-mortality functions to project city-specific temperature-attributable premature deaths for multiple future years which correspond to a single reporting year. Results within the reporting periods are then averaged to account for potential climate variability and reported as a change from a 1990 baseline in the future reporting years of 2030, 2050 and 2100. Results We found temperature-mortality relationships that vary by location and time of year. In general, the largest mortality response during hotter months (April – September) was in July in cities with cooler average conditions. The largest mortality response during colder months (October–March) was at the beginning (October) and end (March) of the period. Using data from two global climate models, we projected a net increase in premature deaths, aggregated across all 209 cities, in all future periods compared to 1990. However, the magnitude and sign of the change varied by cluster and city. Conclusions We found increasing future premature deaths across the 209 modeled U.S. cities using two climate model projections, based on constant temperature-mortality relationships from 1997 to 2006 without any future adaptation. However, results varied by location, with some locations showing net reductions in premature temperature-attributable deaths with climate change
    • …
    corecore