7 research outputs found

    Data mining for the diagnosis of type 2 diabetes

    Get PDF
    Diabetes is the most common disease nowadays in all populations and in all age groups. diabetes contributing to heart disease, increases the risks of developing kidney disease, blindness, nerve damage, and blood vessel damage. Diabetes disease diagnosis via proper interpretation of the diabetes data is an important classification problem. Different techniques of artificial intelligence has been applied to diabetes problem. The purpose of this study is apply the artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining (DM) technique for the diabetes disease diagnosis. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with decision tree (DT), Bayesian classifier (BC) and other algorithms, recently proposed by other researchers, that were applied to the same database. The robustness of the algorithms are examined using classification accuracy, analysis of sensitivity and specificity, confusion matrix. The results obtained by AMMLP are superior to obtained by DT and BC

    Artificial metaplasticity prediction model for cognitive rehabilitation outcome in acquired brain injury patients

    Get PDF
    Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence

    Análisis comparativo de algoritmos de aprendizaje para predecir la evolución de pacientes con Daño Cerebral Adquirido

    Get PDF
    ste trabajo presenta un análisis comparativo entre tres algoritmos de aprendizaje diferentes basados en Árboles de Decisión (C4.5) y Redes Neuronales Artificiales (Perceptrón Multicapa MLP y Red Neuronal de Regresión General GRNN) que han sido implementados con el objetivo de predecir los resultados de la rehabilitación cognitiva de personas con daño cerebral adquirido. En el análisis se han incluido datos demográficos del paciente, el perfil de afectación y los resultados provenientes de las tareas de rehabilitación ejecutadas por los pacientes. Los modelos han sido evaluados utilizando la base de datos del Institut Guttmann. El rendimiento de los algoritmos se midió a través del análisis de la especificidad, sensibilidad y exactitud en la precisión y el análisis de la matriz de confusión. Los resultados muestran que la implementación del C4.5 alcanzó una especificidad, sensibilidad y exactitud en la precisión del 98.43%, 83.77% y 89.42% respectivamente. El rendimiento del C4.5 fue significativamente superior al obtenido por el Perceptrón Multicapa y la Red de Regresión General

    Minería de Datos usando Metaplasticidad Artificial en la Rehabilitación Cognitiva de Pacientes con Daño Cerebral

    Get PDF
    El propósito principal de esta investigación es la aplicación de la Metaplasticidad Artificial en un Perceptrón Multicapa (AMMLP) como una herramienta de minería de datos para la predicción y extracción explícita de conocimiento del proceso de rehabilitación cognitiva en pacientes con daño cerebral adquirido. Los resultados obtenidos por el AMMLP junto con el posterior análisis de la base de datos ayudarían a los terapeutas a conocer las características de los pacientes que mejoran y los programas de rehabilitación que han seguido. Esto incrementaría el conocimiento del proceso de rehabilitación y facilitaría la elaboración de hipótesis terapéuticas permitiendo la optimización y personalización de las terapias. La evaluación del AMMLP se ha realizado con datos proporcionados por el Institut Guttmann. Los resultados del AMMLP fueron comparados con los obtenidos con una red neuronal de retropropagación y con árboles de decisión. La exactitud en la predicción obtenida por el AMMLP en la subfunción cognitiva memoria verbal-visual fue de 90.71 %, resultado muy superior a los obtenidos por los demás algoritmos

    Inverse kinematics of a 6 DoF human upper limb using ANFIS and ANN for anticipatory actuation in ADL-based physical Neurorehabilitation

    Full text link
    Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application

    Un modelo neuronal basado en la metaplasticidad para la clasificación de objetos en señales 1-d y 2-d

    Full text link
    El Algoritmo de Retropropagación (Algoritmo Backpropagation, ABP), es uno de los algoritmos más conocidos y utilizados para el entrenamiento de las Redes Neuronales Artificiales, RNAs. El ABP ha sido empleado con éxito en problemas de clasificación de patrones en áreas como: Medicina, Bioinformática, Telecomunicaciones, Banca, Predicciones Climatológicas, etc. Sin embargo el ABP tiene algunas limitaciones que le impiden alcanzar un nivel óptimo de eficiencia (problemas de lentitud, convergencia y de exactitud en la clasificación). Estos problemas han dado lugar a un gran número investigaciones para mejorar al mencionado algoritmo. Pero a pesar de todas las modificaciones y mejoras propuestas para el ABP, todavía no existe una solución optima, que se pueda aplicar a todos los problemas. En esta Tesis Doctoral se propone una alternativa para mejorar algunas de las deficiencias del ABP. El algoritmo propuesto, es una aplicación de un modelo neuronal basado en la propiedad biológica de la Metaplasticidad. La Metaplasticidad es un concepto biológico ampliamente conocido y usado en muchos campos relacionados con la Biología, Neuro-Biología, Psicología, Neurología y Neuro-Fisiología entre otros. La Metaplasticidad está relacionada con los procesos de la memoria y del aprendizaje. Una de las ventajas del algoritmo propuesto de la Metaplasticidad Artificial (Artificial Metaplasticity, AMP) es que, se puede implementar en cualquier RNA, en esta tesis, se implementó por primera vez para diversas aplicaciones multidisciplinarias en un Perceptron Multicapa (Multilayer Perceptron, MLP). De todos los modelos AMP probados en la literatura, el modelo más eficiente (en función del tiempo de aprendizaje y rendimiento) es el enfoque que conecta la metaplasticidad con la Teoría de la información de Shannon, que establece que los patrones menos frecuentes tienen más información que los patrones más frecuentes. Este modelo deiii fine la metaplasticidad artificial como un procedimiento de aprendizaje que produce una mayor modificación en los pesos sinápticos de los patrones menos frecuentes que de los patrones más frecuentes, como una forma de extraer más información de los primeros que de los últimos. El modelo de la Metaplasticidad Artificial en un Percentrón Multicapa (Arti- ficial Metaplasticity on Percentrón Multilayer, AMMLP) se aplicado en la fase de entrenamiento de las RNAs. Durante esta fase, el algoritmo AMMLP a dado más relevancia a los patrones menos frecuentes y se ha restado importancia a los más frecuentes, asegurando así un entrenamiento más eficaz, mientras se mantiene el rendimiento del MLP. El algoritmo propuesto AMMLP se ha aplicado a diferentes problemas relacionados con la clasificación de patrones en distintas áreas (Médica, Finanzas e Industriales), demostrando en todos los casos ser superior en términos de exactitud en la clasificación, velocidad de convergencia, fiabilidad y bajo coste computacional a los algoritmos propuestos recientemente por otros investigadores y que han sido comparados en esta tesis. iv Abstract The Backpropagation Algorithm, BPA, is one of the most known and used algorithms to training the Artificial Neuronal Networks, ANNs. The BPA has been success used in problems of patterns classification in areas such as: Medicine, Bioinformatic, Telecommunications, Banking, Climatological Predictions, etc. However the BPA has some limitations that prevent to reach an optimal efficiency level (slowness problems, convergence and classification accuracy). These problems have provoked a big number researches to improve the BPA. However, in general none of the modifications have been capable of delivering satisfactory performance for all problems. In this doctoral Thesis is proposed an alternative to improve some of the BPA deficiencies. The suggested algorithm, is a neuronal model based on the biological property of the Metaplasticity. The Metaplasticity is a biological concept widely known in the fields of biology, medical computer science, neuroscience, physiology, neurology and others. The Metaplasticity is related to the processes of memory and of the learning. The main advantage of the suggested Artificial Metaplasticity algorithm, AMP, is that, it is able implementing in any ANNs, in this thesis, algorithm was implemented in a Multilayer Perceptron, MLP. The most efficient AMP model (as a function of learning time and performance) is the approach that connects metaplasticity and Shannon’s information theory, which establishes that less frequent patterns carry more information than frequent patterns. This model defines artificial metaplasticity as a learning procedure that produces greater modifications in the synaptic weights with less frequent patterns than frequent patterns, as a way of extracting more information from the former than from the latter

    Modeling logic and neural approaches to bankruptcy prediction

    Full text link
    The guiding principle of process automation and soft computing is to achieve more robust, traceable and low cost solutions which incorporate the required intelligence to information technologies, thus enabling human centered functionalities. The application of Artificial Intelligence (IA) and Neural systems to the financial and banking industries has performed well in the areas of Risk Management improvement and Bankruptcy prediction. This paper contributes to analyze the synergies between logic and neural based approaches as the basis to enhance bankruptcy prediction models development
    corecore