35 research outputs found

    Targeting HIF2α-ARNT hetero-dimerisation as a novel therapeutic strategy for pulmonary arterial hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a destructive disease of the pulmonary vasculature often leading to right heart failure and death. Current therapeutic intervention strategies only slow disease progression. The role of aberrant hypoxia-inducible factor (HIF)2α stability and function in the initiation and development of pulmonary hypertension (PH) has been an area of intense interest for nearly two decades. Here we determine the effect of a novel HIF2α inhibitor (PT2567) on PH disease initiation and progression, using two pre-clinical models of PH. Haemodynamic measurements were performed, followed by collection of heart, lung and blood for pathological, gene expression and biochemical analysis. Blood outgrowth endothelial cells from idiopathic PAH patients were used to determine the impact of HIF2α-inhibition on endothelial function. Global inhibition of HIF2a reduced pulmonary vascular haemodynamics and pulmonary vascular remodelling in both su5416/hypoxia prevention and intervention models. PT2567 intervention reduced the expression of PH-associated target genes in both lung and cardiac tissues and restored plasma nitrite concentration. Treatment of monocrotaline-exposed rodents with PT2567 reduced the impact on cardiovascular haemodynamics and promoted a survival advantage. In vitro, loss of HIF2α signalling in human pulmonary arterial endothelial cells suppresses target genes associated with inflammation, and PT2567 reduced the hyperproliferative phenotype and overactive arginase activity in blood outgrowth endothelial cells from idiopathic PAH patients. These data suggest that targeting HIF2α hetero-dimerisation with an orally bioavailable compound could offer a new therapeutic approach for PAH. Future studies are required to determine the role of HIF in the heterogeneous PAH population

    miR-1-5p targets TGF-βR1 and is suppressed in the hypertrophying hearts of rats with pulmonary arterial hypertension.

    Get PDF
    The microRNA miR-1 is an important regulator of muscle phenotype including cardiac muscle. Down-regulation of miR-1 has been shown to occur in left ventricular hypertrophy but its contribution to right ventricular hypertrophy in pulmonary arterial hypertension are not known. Previous studies have suggested that miR-1 may suppress transforming growth factor-beta (TGF-β) signalling, an important pro-hypertrophic pathway but only indirect mechanisms of regulation have been identified. We identified the TGF-β type 1 receptor (TGF-βR1) as a putative miR-1 target. We therefore hypothesized that miR-1 and TGF-βR1 expression would be inversely correlated in hypertrophying right ventricle of rats with pulmonary arterial hypertension and that miR-1 would inhibit TGF-β signalling by targeting TGF-βR1 expression. Quantification of miR-1 and TGF-βR1 in rats treated with monocrotaline to induce pulmonary arterial hypertension showed appropriate changes in miR-1 and TGF-βR1 expression in the hypertrophying right ventricle. A miR-1-mimic reduced enhanced green fluorescent protein expression from a reporter vector containing the TGF-βR1 3'- untranslated region and knocked down endogenous TGF-βR1. Lastly, miR-1 reduced TGF-β activation of a (mothers against decapentaplegic homolog) SMAD2/3-dependent reporter. Taken together, these data suggest that miR-1 targets TGF-βR1 and reduces TGF-β signalling, so a reduction in miR-1 expression may increase TGF-β signalling and contribute to cardiac hypertrophy

    A novel cyclic biased agonist of the apelin receptor, MM07, is disease modifying in the rat monocrotaline model of pulmonary arterial hypertension.

    Get PDF
    BACKGROUND AND PURPOSE: Apelin is an endogenous vasodilatory and inotropic peptide that is down-regulated in human pulmonary arterial hypertension, although the density of the apelin receptor is not significantly attenuated. We hypothesised that a G protein-biased apelin analogue MM07, which is more stable than the endogenous apelin peptide, may be beneficial in this condition with the advantage of reduced β-arrestin-mediated receptor internalisation with chronic use. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats received either monocrotaline to induce pulmonary arterial hypertension or saline and then daily i.p. injections of either MM07 or saline for 21 days. The extent of disease was assessed by right ventricular catheterisation, cardiac MRI, and histological analysis of the pulmonary vasculature. The effect of MM07 on signalling, proliferation, and apoptosis of human pulmonary artery endothelial cells was investigated. KEY RESULTS: MM07 significantly reduced the elevation of right ventricular systolic pressure and hypertrophy induced by monocrotaline. Monocrotaline-induced changes in cardiac structure and function, including right ventricular end-systolic and end-diastolic volumes, ejection fraction, and left ventricular end-diastolic volume, were attenuated by MM07. MM07 also significantly reduced monocrotaline-induced muscularisation of small pulmonary blood vessels. MM07 stimulated endothelial NOS phosphorylation and expression, promoted proliferation, and attenuated apoptosis of human pulmonary arterial endothelial cells in vitro. CONCLUSION AND IMPLICATIONS: Our findings suggest that chronic treatment with MM07 is beneficial in this animal model of pulmonary arterial hypertension by addressing disease aetiology. These data support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.the Medical Research Council MC_PC_14116 [to APD] Wellcome Trust [107715/Z/15/Z to APD], Programme in Metabolic and Cardiovascular Disease [096822/Z/11/Z to PY; 203814/Z/16/A to TLW], Parke Davis Fellowship [to PY], British Heart Foundation [FS/14/59/31282 to CR] and in part by the National Institute for Health Research Cambridge Biomedical Research Centre

    HIF2α-arginase axis is essential for the development of pulmonary hypertension.

    Get PDF
    Hypoxic pulmonary vasoconstriction is correlated with pulmonary vascular remodeling. The hypoxia-inducible transcription factors (HIFs) HIF-1α and HIF-2α are known to contribute to the process of hypoxic pulmonary vascular remodeling; however, the specific role of pulmonary endothelial HIF expression in this process, and in the physiological process of vasoconstriction in response to hypoxia, remains unclear. Here we show that pulmonary endothelial HIF-2α is a critical regulator of hypoxia-induced pulmonary arterial hypertension. The rise in right ventricular systolic pressure (RVSP) normally observed following chronic hypoxic exposure was absent in mice with pulmonary endothelial HIF-2α deletion. The RVSP of mice lacking HIF-2α in pulmonary endothelium after exposure to hypoxia was not significantly different from normoxic WT mice and much lower than the RVSP values seen in WT littermate controls and mice with pulmonary endothelial deletion of HIF-1α exposed to hypoxia. Endothelial HIF-2α deletion also protected mice from hypoxia remodeling. Pulmonary endothelial deletion of arginase-1, a downstream target of HIF-2α, likewise attenuated many of the pathophysiological symptoms associated with hypoxic pulmonary hypertension. We propose a mechanism whereby chronic hypoxia enhances HIF-2α stability, which causes increased arginase expression and dysregulates normal vascular NO homeostasis. These data offer new insight into the role of pulmonary endothelial HIF-2α in regulating the pulmonary vascular response to hypoxia

    Caveolae protect endothelial cells from membrane rupture during increased cardiac output.

    Get PDF
    Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1(-/-) mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo

    The long-term regulation of ventilation in humans

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Variability in End-Tidal P CO2

    No full text
    corecore