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Abstract

The microRNA miR-1 is an important regulator of muscle phenotype including cardiac mus-

cle. Down-regulation of miR-1 has been shown to occur in left ventricular hypertrophy but its

contribution to right ventricular hypertrophy in pulmonary arterial hypertension are not

known. Previous studies have suggested that miR-1 may suppress transforming growth fac-

tor-beta (TGF-β) signalling, an important pro-hypertrophic pathway but only indirect mecha-

nisms of regulation have been identified. We identified the TGF-β type 1 receptor (TGF-

βR1) as a putative miR-1 target. We therefore hypothesized that miR-1 and TGF-βR1

expression would be inversely correlated in hypertrophying right ventricle of rats with pulmo-

nary arterial hypertension and that miR-1 would inhibit TGF-β signalling by targeting TGF-

βR1 expression. Quantification of miR-1 and TGF-βR1 in rats treated with monocrotaline to

induce pulmonary arterial hypertension showed appropriate changes in miR-1 and TGF-

βR1 expression in the hypertrophying right ventricle. A miR-1-mimic reduced enhanced

green fluorescent protein expression from a reporter vector containing the TGF-βR1 3’-

untranslated region and knocked down endogenous TGF-βR1. Lastly, miR-1 reduced TGF-

β activation of a (mothers against decapentaplegic homolog) SMAD2/3-dependent reporter.

Taken together, these data suggest that miR-1 targets TGF-βR1 and reduces TGF-β signal-

ling, so a reduction in miR-1 expression may increase TGF-β signalling and contribute to

cardiac hypertrophy.

Introduction

Pulmonary arterial hypertension (PAH) is characterised by high, pre-capillary pulmonary vas-

cular resistance caused by remodelling of pulmonary arterioles [1,2]. PAH can be, heritable,

idiopathic, related to drug or toxin exposure or associated with an underlying condition [3].

Across all aetiologies of PAH, the pathology remains largely consistent and involves signifi-

cant restriction and remodelling of the pulmonary vasculature, leading to a reduction in cross-
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sectional area available for pulmonary blood flow [2]. The elevated vascular resistance pro-

motes right ventricular (RV) hypertrophy [1] as a consequence of increased afterload and can

lead to right heart failure and premature death [2].

As adult myocardial cells do not divide, increased RV mass is a consequence of cell hyper-

trophy rather than proliferation. Increased activity of a number of signalling pathways has

been demonstrated to drive cardiomyocyte hypertrophy. One pathway shown to be increased

in a range of different hypertrophic conditions is the transforming growth factor-beta (TGF-β)

signalling pathway. For example, TGF-β expression is elevated in models of myocardial infarc-

tion and remodelling, where it is known to associate with fibrosis and hypertrophy [4]. To

stimulate the pathway, TGF-β binds to a complex of type I and type II receptors increasing the

serine/threonine kinase activity of the receptors with the consequent activation of the (mothers

against decapentaplegic homolog) SMAD signalling pathway and activation of TGF-β acti-

vated kinase 1 (TAK1) [4]. Activation of the TGF-β signalling pathway is important in fibrosis

and the synthesis of matrix components in the heart in response to myocardial infarction as

well as to the inflammatory response of the heart [5,6]. TGF-β also contributes to cardiac myo-

cyte hypertrophy in particular in response to increased angiotensin II [7]. Factors that modu-

late TGF- β signalling are therefore likely to contribute to hypertrophy.

MicroRNAs (miRNAs) are key regulators of cell phenotype that fine-tune the proteome by

inhibiting the translation or promoting the degradation of target mRNAs. A number of miR-

NAs have been shown to modulate the expression of components of the TGF-β signalling

pathway, both activating and inhibiting the pathway. miRNA activators of the pathway target

inhibitory components and include miR-424-5p which targets SMAD7 and miR-542-5p,

which targets SMAD7 and SMURF1 (SMAD specific E3 ubiquitin protein ligase 1) [8,9].

Inhibitors of the pathway include miR-101a which targets TGF-β receptor type I (TGF-βR1),

and miR-422a which targets SMAD4, the co-SMAD required for both bone morphogenic pro-

tein (BMP) and TGF-β signalling [10,11]. Basal expression of these miRNAs will contribute to

setting the level of protein synthesis and thereby the capacity of the cell to signal under basal

conditions. To contribute to changes in cell phenotype, expression of these miRNAs also

needs to change in response to the disease process. Consistent with increased TGF-β signalling

contributing to hypertrophy the expression of miR-424-5p is increased in some models of car-

diac hypertrophy, whereas the expression of miR-101a is suppressed post-coronary occlusion

[12,13].

miR-1, one of the most highly expressed miRNAs in the heart, contributes to myocyte phe-

notype. miR-1 expression is suppressed in hypertrophy, where TGF-β signalling is increased

[14]. Similarly, miR-1 is suppressed in the skeletal muscle of patients with intensive care unit

acquired weakness (ICUAW) who have increased nuclear pSMAD2/3 [15] suggesting reduced

miR-1 contributes to the increase in TGF-β signalling. To date studies have shown an indirect

effect of miR-1 on TGF-β signalling as the miRNA targets and suppresses histone deacetylase 4

(HDAC4) expression. This suppression of HDAC4 protein content increases follistatin expres-

sion, thereby reducing the amount of free TGF-β ligand and suppressing TGF-β signalling

[16]. However, bioinformatic analysis predicts that miR-1 will target the TGF-β type I receptor

ALK5 (activin A receptor type II-like kinase) suggesting a more direct effect on the pathway.

We therefore determined the expression of miR-1 and ALK5 in the right ventricle of rats with

pulmonary hypertension as a consequence of monocrotaline treatment. This model allows us

to investigate factors contributing to myocyte hypertrophy. We hypothesized that RV hyper-

trophy would be associated with a reduction in miR-1 and increased TGF-βR1 protein levels.

We also hypothesized that miR-1 would suppress ALK5 and TGF-β signalling in cells in

culture.

miR-1-5p targets TGF-βR1 and is suppressed in hypertrophying hearts of PAH rats
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Methods

In silico analysis of miR-1

Potential targets in the TGF-β signalling pathway for miR-1 were identified via the miRWalk

2.0 database, [17]. Putative targets were identified but screening the data base for targets iden-

tified by all 10 of the available algorithms. Putative targets were chosen as those identified by 5

or more algorithms. TGF-βR1/ALK-5 was predicted as a target by 6 algorithms including

miTRWalk, miRanda and Targetscan. As TGF-β signalling has previously been shown to be

important in regulating cardiac size, it was chosen as the basis of an enquiry into miR-1 regula-

tion of cardiac hypertrophy.

Monocrotaline rat model

Monocrotaline (MCT, Sigma; C2401) or phosphate buffered saline (PBS) was administered to

6–8 week-old rats via s.c. injection as previously described [18]. Eighteen male Sprague Dawley

rats bought from Charles River Laboratories, Harlow, UK were included in the study and were

randomly assigned to monocrotaline or PBS treatment. The study was reviewed and approved

by the Cambridge University Animal Welfare and Ethical Review Body under the Home office

license number 80/2460 19b/Section E No 7. Animals were housed and monitored according

to local guidelines in the Centre for Biomedical Resources at Cambridge University. Animals

were housed in groups (2–4 per cage) in temperature-controlled accommodation with free

access to water and food. A day night cycle was maintained throughout the course of treat-

ment. A number of quality improvement projects, aimed at increasing the animals’ welfare,

were conducted during the project, from which the rats benefitted. Animals were checked for

health by staff at least once per day and were weighed every 2–3 days during treatment. Any

animal that showed signs of distress of moderate severity or more, or who lost 20% of body

weight was managed as per protocol and humanely killed. Animals who reached the end of the

treatment course were anaesthetised with isoflurane, to render them unconscious, before right

heart catheterisation was performed. They were subsequently humanely killed, without regain-

ing consciousness. Consequently, animals did not survive to require post-operative care. Ani-

mals were euthanised by exsanguination, by transecting the femoral vessels, under terminal

anaesthesia, as per the project license. The primary outcomes for this part of the study were

the expression of miR-1 and of Alk5.

RNA extraction & RT-qPCR

Ventricular RNA was extracted as previously described [19]. Cell RNA extractions were per-

formed using the TaKaRa CellAmp Direct RNA kit (Clontech) as per manufacturer’s protocol.

miRNA expression was quantified by reverse transcription followed by EXPRESS SyBr PCR

using the Agilent Genomics kit for polyA addition and first strand synthesis according to the

manufacturer’s instructions. mRNA was quantified by reverse transcription (RT) followed by

quantitative polymerase chain reaction (qPCR) using SYBR green detection as previously

described [20] and the primer sequences as shown in Table 1. The reverse primer for the PCR

of miR-1 and U6 was the reverse primer provided with the polyadenylation and first strand

synthesis kit.

Cell culture

LHCN-M2 human skeletal myoblasts obtained from Vincent Mouly (Sorbonne Unitversité) in

2014 and were cultured in Skeletal muscle growth medium (PromoCell) supplemented with
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20% FCS were transfected with miRNA mimic (miRVana) and Lipofectamine 2000 (Invitro-

gen) as previously described [21].

Protein isolation from cells & western blotting

Cells were lysed in 1X cell lysis buffer (Cell Signalling Technologies) supplemented with prote-

ase inhibitor cocktail (Sigma) (1/100) and quantified as previously described [19]. Protein

expression was analysed by western blotting after electrophoresis through a 10% SDS poly-

acrylamide gel as previously described [22]. Blots were probed for ALK5 protein using anti-

TGF-βR1 (Santa Cruz, sc-9048) diluted 1:500 in PBS supplemented with 5% milk overnight at

4˚C, washed 3 times for 5 mins per wash in PBS Tween20 (0.05%) and detected with Horserad-

ish peroxidase conjugated anti-rabbit IgG (1:3000 in PBS +5% milk) for 90 mins. Uncropped

original blots are shown in S1 and S2 Figs.

EGFP reporter cloning & assay

A section of the 3’UTR of TGF-βR1 containing the putative miR-1 binding site was amplified

from human cDNA using primers: forward (5’–3’), GGAGATCTGGGTGTTTGATATTTCTTC
AT reverse: (5’-3’) GGGGGATCCGGACATTTTCTGTACATATCTTA and ligated into pGEM-T

Easy (Promega). After sequencing to ensure the correct DNA had been amplified the insert

was removed by BglII and BamHI digestion and ligated into a pCAGGS-enhanced green fluo-

rescent protein (EGFP) vector down-stream of the coding region. Final plasmid sequences

were confirmed by sequencing.

To quantify the effect of miR-1 on protein expression cells were transfected with the miR-

mimic or control as previously described [21]. Twenty four hours later, the cells were trans-

fected with this pCAGGS-EGFP-reporter either with or without the 3’UTR inset, cells were

then lysed 24h later and EGFP expression was quantified by fluorescence with excitation at

480nm and emission detected at 510nm in a Cytofluor plate reader (Applied Biosystems).

Luciferase assay

24 hours following miRNA transfection, cells were transfected with a 3:1 ratio of luciferase

reporter vectors (CAGA)12 (firefly luciferase) and pRLTK (renilla luciferase) as previously

described; the (CAGA)12 vector contains a SMAD binding element (SBE) specific to SMAD3

and SMAD4 [23]. 24 hours following this transfection cells were left untreated or treated with

5ng or 1ng of TGF-β1 ligand for 6 hours before harvesting for luciferase assay as previously

described [9].

Statistics

All statistical analyses were performed in GraphPad PRISM and no samples were excluded as

outliers and data were analysed using a between samples design. Animal experiments were

conducted in two groups for a total of 9 MCT- and 9 PBS-treated animals. Differences in

Table 1. Primer list for qPCR.

Gene Forward sequence Reverse sequence

miR-1-5p CCGGTGGAATGTAAAGAAGTATGTAT Agilent Universal reverse primer

U6 (housekeeper) CTCGCTTCGGCAGCACA Agilent Universal reverse primer

TGF-βR1 GAACTCCCAACTACAGAAAAGCA GCAGACTGGACCAGCAATGA

GAPDH (housekeeper) GGTGGTCTCCTCTGACTTCAACA GTTGCTGTAGCCAAATTCGTTGT

https://doi.org/10.1371/journal.pone.0229409.t001
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miRNA and mRNA expression between animal groups and left and right ventricles were cal-

culated via Kruskal-Wallis test (ANOVA) for non-parametric data with post-hoc analysis

using Dunn’s multiple test correction. All other comparisons calculated using Student’s t-test

for normally distributed data or by Mann-Whitney U test for non-parametric data. In vitro
mRNA expression and luciferase data shown were produced in three independent experi-

ments, each consisting of six independent transfections; mRNA measures assayed in duplicate.

Box-plots expressed as median with min-max bars. In vitro protein expression data shown via

western blot are three independent experiments from 6-well plates. All tests were based on two

tailed analysis and differences were taken to be significant at p<0.05.

Results

miR-1-5p & TGF-βR1 are inversely expressed in the RV of the MCT treated

rat

4 weeks after MCT or PBS-treatment, RV weight (RV / ((left ventricle) LV + septum)) and

right ventricular systolic pressure (RVSP) were found to be higher in the MCT-treated rats

compared to controls confirming increased vascular resistance, as previously published [18].

miR-1-5p expression was decreased 7-fold (p = 0.0077) in the RV of MCT compared to PBS

treated rats (Fig 1A). There was no significant difference in expression of miR-1-5p in the left

ventricles of the MCT and PBS-treated animals. Median expression of miR-1-5p was higher in

the LV than RV of MCT treated animals but this difference did not reach statistical signifi-

cance (p = 0.089). TGF-βR1 mRNA expression was higher in MCT-treated rat RVs compared

to PBS controls (2.5-fold, p = 0.008), whereas no change in expression was noted between

PBS-treated RVs to LVs (Fig 1B). TGF-βR1 protein expression was also higher (2.5-fold,

p = 0.004) (Fig 1C) in the RVs of monocrotaline treated rats.

miR-1-5p targets TGF-βR1

In silico analysis predicted one binding-site for miR-1-5p in the 3’UTR TGF-βR1 (ALK5) of

both humans and rats (Fig 2A). The region of the 3’ UTR of human ALK-5 containing this

sequence was amplified by PCR and cloned into the 3’-UTR of EGFP in the vector pCAGG-

S-EGFP to generate pCAGGS-EGFP-3T and the effect of miR-1-5p on EGFP expression was

determined in LHCN-M2 cells. Transfection of miR-1-5p reduced EGFP expression from

pCAGGS-EGFP-3T compared to control miR-mimic but did not affect the expression of

EGFP from pCAGGS-EGFP (Fig 2B).

miR-1 reduces TGF-βR1 mRNA & protein expression and signalling in

vitro

To determine the effect of miR-1-5p on TGF-βR1 mRNA and protein, LHCN-M2 cells were

transiently transfected with miR-1-5p mimic or control mimic. Transfection with the miR-1-

5p mimic significantly reduced both TGF-βR1 mRNA and protein levels compared to trans-

fection with the control mimic (Fig 2C and 2D). To determine whether TGF-β signalling was

suppressed by miR-1-5p, a luciferase reporter with a TGF-β responsive promoter (CAGA)12

was used. Transfection with miR-1-5p reduced TGF-β stimulated reporter expression in

response to both 1 and 5 ng/mL TGF-β, compared to control mimic transfection. However,

there was no effect of the miRNA on basal reporter activity (Fig 2E).

miR-1-5p targets TGF-βR1 and is suppressed in hypertrophying hearts of PAH rats
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Discussion

Our data identify miR-1 as a regulator of TGF-β signalling by suppressing the expression of

ALK-5. Furthermore, the data show that miR-1-5p is suppressed in the RV of MCT rats coinci-

dent with increased ALK-5. This observation suggests that under normal conditions miR-1

reduces the sensitivity of cardiomyocytes to TGF-β by reducing the expression of ALK-5. Con-

sequently, this reduction in miR-1-5p in hypertrophy leads to an increase in ALK-5 protein

levels and thereby an increase in TGF-β signalling.

Given the effects of TGF-β on cardiac myocytes such an increase in TGF-β signalling is

likely to contribute to cardiac hypertrophy. However, there are a number of limitations to our

study that preclude us from confirming that the observed reduction in miR-1 promotes car-

diac hypertrophy by relieving miR-1 suppression of TGF-β signalling. Firstly, we cannot deter-

mine whether the suppression in miR-1-5p preceded or came in the early phase of the

Fig 1. miR-1-5p and TGF-βR1 are inversely expressed in the RV of MCT-treated rats with PAH. miR-1 and transforming growth factor-beta receptor 1 (TGF-βR1)

were quantified in RNA extracted from left (LV) and right ventricles (RVs) of monocrotaline (MCT)-treated rats by qPCR. A. miR-1-5p expression was significantly

reduced in MCT-treated rat RVs compared to phosphate buffered saline (PBS)-treated (9 animals in each group). Mean expression of miR-1-5p was lower in the MCT

RV compared to the MCT LV but this difference was not statistically significant. B. TGF-βR1 expression was significantly increased in MCT-treated rat RVs compared

to LVs and to PBS-treated RVs. C. Western blot showing increased TGF-βR1 protein in the MCT-treated RVs compared to PBS treated RVs. Quantification of TGF-βR1

(bottom left) normalised to total protein in each lane as determined by Ponceau S staining (bottom right).

https://doi.org/10.1371/journal.pone.0229409.g001
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hypertrophic response, which would be required for the reduction in miR-1 to be a key regula-

tor of the response rather than an epiphenomenon. Secondly, we cannot be sure that the

increase in ALK-5 protein occurred in the cardiac myocytes rather than in fibroblasts where it

would contribute to fibrosis. For example, in pressure overload hypertrophy neutralizing anti-

bodies to TGF-β 1 inhibit the fibrotic response but do not inhibit the hypertrophy of the myo-

cytes [24]. This lack of effect may be due to a limited effect of TGF-β 1 in cardiac myocyte

hypertrophy or may be due to the inability of the antibodies to interact with the pool of TGF-β
1 that acts on myocytes. Similarly, it may be a consequence of alternative TGF-β ligands (e.g.

TGF-β 3) which also signal via TGF- βR1 contributing to the hypertrophic response and are

not neutralized by the antibody, but which would be inhibited by over-expression of a domi-

nant inhibitory TGF-β type II receptor (TGFBR2). Finally, miR-1 has been shown to affect the

expression of a number of different proteins that regulate cardiac cell physiology in a manner

consistent with the suppression of growth. Consequently, we cannot determine the relative

importance of the interaction between miR-1 and TGF-βR1 in the hypertrophic response.

These proteins include the sodium calcium exchanger (NCX1) [25] cyclin-dependent kinase 9

(Cdk9) and fibronectin [14] in the heart. Further evidence for a role for miR-1 in the develop-

ment of the RV hypertrophy in response to PAH would require the delivery of miR-1 to the

RV (e.g. by adenovirus) and demonstration that this slowed or prevented the development of

hypertrophy. However, these experiments are beyond the current scope of our study and

Fig 2. miR-1 targets TGF-βR1 and inhibits TGF-β signalling. A. Putative binding side of miR-1- 5p in the transforming growth factor-beta receptor 1 (TGF-βR1) 3’-

untranslated region (3’UTR) in humans (A.1) and rats (A.2). Transfection of LHCN-M2 cells with miR1-5p significantly reduced enhanced green fluorescent protein

(EGFP) expression from a reporter gene containing the TGF-βR1 3’UTR binding site (B). TGF-βR1 mRNA (C) and TGF-βR1 protein (D) are reduced following miR-1

transfection. E. Transfection of LHCN-M2 cells with miR-1-5p reduced TGF-β1 stimulated luciferase reporter gene expression.

https://doi.org/10.1371/journal.pone.0229409.g002
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whilst they have not been performed in PAH similar experiments have shown that over-

expression of miR-1-5p reverses insulin-like growth factor-1 (IGF1) induced hypertrophy in
vitro [26,27] and that adenoviral delivery of miR-1 to the myocardium has been shown to

reverse overload induced LV hypertrophy [28]. Furthermore, other studies have shown

increasing SERCA2a reverses hypertrophy and restores miR-1 expression [25]. Similarly,

determination of the relative contribution of TGF-β signalling in the development of the same

hypertrophy could be determined by the delivery of TGF-β neutralizing antibodies or more

selectively by over-expression of a dominant inhibitory form of the TGFBR2 in the RV in a

model of PAH.

miR-1-5p expression is not restricted to cardiomyocytes as it is also highly expressed in vas-

cular and skeletal muscle cells. Consequently, it seems likely that miR-1 may also contribute to

the TGF-β responses of these cells and thereby to TGF-β driven pathology in the associated tis-

sues. Increased TGF-β signalling is suggested to promote the pulmonary artery smooth muscle

cell (PASMC) proliferation that contributes to PAH [29]. Indeed, ALK-5 is thought to mediate

abnormal PASMC proliferation in patients with familial PAH and inhibition of ALK-5 has

been shown to inhibit the progression of PAH [30]. Similarly over-expression of a dominant

inhibitory TGFBR2 has been shown to inhibit the development of PAH [31]. Consequently, it

is possible that reduced expression of miR-1 in PASMCs contributes to this phenotype but

appropriate changes in miR-1 expression in the PASMCs have yet to be demonstrated so such

a contribution remains to be determined. In skeletal muscle, signalling through ALK-5 is a

major contributor to skeletal muscle atrophy with both TGF-β promoting atrophy via ALK-5

and the TGF-βR2 and activin and myostatin promoting atrophy through ALK-5 and the acti-

vin type 2B receptor. Consistent with a role for the expression of miR-1-5p contributing to the

maintenance of muscle mass, reduced miR-1 expression has been observed in the quadriceps

of patients with intensive care unit-acquired weakness (ICUAW) and those with chronic

obstructive pulmonary disease (COPD) [15,19]. In both conditions there is muscle atrophy

and increased signalling through ALK-5.

In conclusion we have shown that miR-1-5p binds to the 3’UTR of the TGF-β1 receptor

ALK-5, suppressing the expression of the protein and the strength of signals induced by the

ligand. These data suggest that under basal conditions high miR-1 expression reduces TGF-

βR1 and lowers the response of the cell to TGF-β ligands. However, in the RV of rats with

PAH the reduction in miR-1 contributes to hypertrophy by increasing ALK-5 protein levels.

Supporting information

S1 Fig. The full western blot from Fig 1C.

(TIFF)

S2 Fig. Full blot for Fig 2D.

(TIFF)
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