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Abstract 

Pulmonary vasoconstriction initiates pulmonary vascular remodelling, which, 

when prolonged, leads to the development of pulmonary hypertension.  The 

hypoxia-inducible transcription factors (HIFs), HIF-1α and HIF-2α, are known 

to contribute to the process of hypoxic pulmonary vascular remodelling. Here 

we show that HIF-2α, expressed in pulmonary endothelial cells, is essential 

for hypoxia-induced pulmonary arterial hypertension (PAH). Loss of 

endothelial HIF-2α expression prevented cardiac hypertrophy and vascular 

remodelling.  A key target of HIF-2α in the endothelial cell is the arginase-1 

enzyme, which directly influences vascular remodelling, and indirectly 

regulates nitric oxide synthesis. Deletion of arginase-1 in the pulmonary 

endothelium attenuated many of the pathophysiological symptoms associated 

with PAH, indicating that HIF-2α/arginase expression in endothelial cells is an 

essential feature of pulmonary hypertension. (word count 117) 
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Significance Statement 

We show that the expression of the HIF-2α transcription factor in the 

endothelial cells of the lung is essential for the development of the pulmonary 

hypertension that results from prolonged exposure to low oxygen.  We 

subsequently show that the HIF-2α transcription factors’ control of the 

arginase-1 enzyme is required for the development of pulmonary 

hypertension, and of its resultant vascular remodelling.  This shows that low 

oxygen levels cause a persistent expression, first, of HIF-2α, and then of 

arginase-1, which in turn regulates vascular constriction and the downstream 

changes in extracellular matrix formation; these are the fundamental 

characteristics of the pulmonary arterial hypertension syndrome. 

 

Introduction 

Hypoxia affects vascular flow in mammals in many different ways, but 

significant drops in oxygenation have a particular effect on the lung.  In the 

pulmonary vascular bed, alveolar hypoxia leads to an immediate 

vasoconstrictor response (hypoxic pulmonary vasoconstriction, or HPV) (1).  

This effect is intended to preserve oxygen in the systemic circulation by 

reducing perfusion of regions of the lung with lowered levels of air flow (2). 

The physiological response to localized pulmonary hypoxia can cause 

problems when alveolar hypoxia involves the entire lung. In conditions 

including chronic obstructive pulmonary disease (3), idiopathic pulmonary 

fibrosis (4), and at high altitude (5), HPV leads to persistent increases in 

pulmonary arterial pressures.  This in turn causes reduced plasticity of the 
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vascular bed, sustained pulmonary vascular remodelling and, ultimately, 

debilitating right ventricular hypertrophy and failure(2). 

 

The hypoxia inducible factors (HIFs) are transcription factors and key 

regulators of the molecular response to hypoxia. The targets of HIFs include 

genes controlling vascularization, cellular proliferation, migration, and 

metabolism(6-11).  There have been a number of recent discoveries in human 

genetics that have correlated HIF function with HPV. For example, individuals 

with Chuvash polycythemia, a condition with augmented HIF stability under 

normal oxygen conditions, exhibit enhanced HPV(12). Other mutations 

resulting in increased expression of the HIF genes have been shown to 

augment HPV response (13). 

 

A well-characterized animal model of hypoxia-induced pulmonary 

hypertension involves exposure to chronic hypoxia (CH), typically 10-12% 

inspired oxygen. This results in extensive vascular remodelling, marked 

pulmonary hypertension and right ventricular hypertrophy over a period of a 

few weeks. Exposure to CH in rodents results in vasoconstriction and a 

pattern of vascular remodelling that is reminiscent of humans with hypoxia-

associated pulmonary hypertension (14, 15). 

 

Mice that are hemizygous for either of the HIF isoforms, HIF-1α (16) or HIF-

2α (17), have been shown to have attenuated pulmonary vascular remodelling 

following experimental CH. Conditional deletion of HIF-1α in smooth muscle 

also ameliorates the degree of remodelling in CH(18).  Conversely, mice 
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homozygous for the R200W mutation that causes Chuvash polycythemia, 

which acts in part to stabilize HIF-2α, spontaneously develop pulmonary 

hypertension(19). 

 

HIF-2α is known to modulate the expression of the metalloenzyme arginases 

(Arg1 and Arg2)(20, 21); both of these arginase isoforms play an important 

role in the regulation of L-arginine homeostasis and the production of L-

ornithine for subsequent polyamine and proline synthesis.  These latter are 

key substrates required for endothelial and smooth muscle cell proliferation 

and collagen synthesis (22).  These isoforms are expressed in vascular 

endothelial cells and are known to be critical regulators of L-arginine 

availability and nitric oxide (NO) production via nitric oxide synthases (NOS) 

(23).  NO plays a significant role in the pathogenesis of pulmonary arterial 

hypertension (PAH), with previous studies identifying lower plasma and 

exhaled NO in PAH patients than those found in healthy controls (24). Oral 

supplementation of L-arginine has been suggested to improve hemodynamics 

and exercise capacity in patients with PAH (25).  We have previously 

demonstrated the roles HIF-1α and HIF-2α play in modulating the expression 

of NOS2 and Arg-1/-2 in different vascular beds (20, 26), and how this in turn 

can allow the differential action of the HIF transcription factors to regulate NO 

homeostasis (21).  Under physiological conditions there is sufficient L-arginine 

available in endothelial cells to convert to NO and L-citrulline.  However, 

prolonged exposure to hypoxia increases the expression of the Arg-1/-2 

enzymes, resulting in decreased availability of L-arginine and thus, impaired 

NO production (27).  Conversely, inhibition of arginase activity redirects L-
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arginine back towards NOS, allows increased generation of NO, which can in 

turn alleviate pulmonary hypertension(28). 

 

The mechanisms by which HIF acts in pulmonary vascular remodelling are 

not fully defined; in particular, the role played by the endothelium in this 

process is not well understood.  Here, we delete the HIF isoforms and one of 

their targets, the Arg1 gene, specifically in the pulmonary endothelium (29), 

and show that expression of the HIFα transcription factors in pulmonary 

endothelial cells is an essential aspect of the hypoxic response of the lung, 

with broad influence over the development of pulmonary hypertension. 

 

Results 

Deletion of HIFα isoforms in pulmonary endothelium  

Genetically manipulated mouse strains with conditional alleles of either the 

HIF-1α or -2α isoforms (30, 31) were crossed to mouse strains expressing the 

cre recombinase enzyme under the control of the Alk1- or L1 promoter (L1cre) 

(29).  To determine the pulmonary endothelial specificity of this transgene, we 

analysed the cre activity of adult L1cre mice by crossing with a 

ROSA26Sortm9(CAG-tdTomato) reporter strain. Red fluorescent protein (tdTomato) 

is expressed following Cre-mediated recombination in this strain background 

(Supplementary Figure 1A).  As shown in supplemental data, lung vasculature 

in frozen sections was easily identifiable and strongly fluorescent.  Minimal 

expression of tdTomato was detectable in the endothelium of other tissues 

including heart, spleen and kidney (Supplemental Figure 1B). This is 

consistent with the published specificity of this transgene (29).  Deletion 
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efficiency was assessed in purified lung endothelial cells by quantitative PCR 

(qPCR) and deletion frequency was greater than 80% (Supplemental Figure 

1C), with little or no detectable deletion in other tissues examined. 

 

HIF-2α deletion in the pulmonary endothelium prevents hypoxia-induced 

pulmonary hypertension 

As an initial test of the importance of endothelial HIF-α stabilisation to the 

progression of hypoxia induced-pulmonary hypertension, we exposed wild 

type (WT) and pulmonary endothelial HIF-α deleted mice to normoxic or 

hypoxic (10% O2) normobaric atmospheres for 21 days.  The development of 

pulmonary hypertension was then assessed through the measurement of right 

ventricular systolic pressures (RVSPs), via catheterisation through the jugular 

vein. Right ventricular systolic pressures in L1cre-HIF-2α mice (18.9±1.0 

mmHg, n=11) under normoxic conditions were significantly lower than 

littermate controls (22.4±1.1 mmHg, n=9, p=0.03) mice. However RVSP from 

normoxic L1cre-HIF-1α mice (24.7±1.7 mmHg, n=6) did not differ from WT 

controls (Figure 1A).  The rise in RVSP normally observed following chronic 

hypoxic challenge was essentially absent in mice with pulmonary endothelial 

HIF-2α deletion.  The RVSPs of L1cre-HIF-2α mice following hypoxic 

exposure (26.1±1.6 mmHg, n=7) were not significantly different from those of 

untreated WT mice (22.48±1.19, n=9) and were much lower than the elevated 

values seen in WT littermate controls (41.9±1.8 mmHg, n=12, p<0.0001) and 

L1cre-HIF-1α mice (36.25±2.37mmHg, n=7, p<0.005). 

The ratio of right ventricular weights to those of the left ventricle plus septum 

(RV/LS+S), an indicator of right ventricular hypertrophy, was likewise 
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significantly higher in wild-type (0.316±0.01, n=8, p<0.0001) and L1cre-HIF-

1α (0.323±0.02, n=8, p<0.001) mice exposed to hypoxia, when compared to 

the ratios found in L1cre-HIF-2α (0.209±0.008, n=8) mice (Figure 1B). Both 

red cell counts and hemoglobin values increased while white cell counts 

decreased following exposure to chronic hypoxia (Supplemental Figure 2A 

and B).  Body weights of all sub-groups, although somewhat variable, trended 

towards a decrease following exposure to hypoxia (supplemental figure 2C). 

 

Pulmonary endothelial HIF-2α is essential for vascular remodelling 

Having established that pulmonary endothelial cell-specific deletion of HIF-2α 

protects mice from increasing pulmonary pressures in response to chronic 

hypoxia, we next sought to determine how loss of pulmonary endothelial HIF-

2α affects hypoxia-induced vascular remodelling.  Serial lung sections were 

immunostained for smooth muscle actin (α-SMA), in order to detect changes 

in smooth muscle coverage of the vasculature, and von Willebrand’s Factor 

(vWF) to mark the endothelial cells themselves.  The lungs from both wild-

type and L1cre-HIF-1α mice demonstrated the typical tissue remodelling seen 

following chronic hypoxic challenge (Figure 2A).  As expected, there was an 

increase in α-SMA associated with pulmonary arteries that are in close 

proximity to terminal and respiratory bronchioles (Figure 2A). 

However, little to no remodelling was observed in lung sections from L1cre-

HIF-2α mice (Figure 2A), reflecting the normal RVSPs observed in these 

animals following exposure to chronic hypoxia.  Lung sections were stained 

with Verhoeff’s stain to detect elastin (32) and thus characterize perivascular 

collagen deposition; this was increased in both WT controls and L1cre-HIF-1α 
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mice. However, only minimal staining was seen in the L1cre-HIF-2α mice 

(Figure 2A).  Medial thickening of vessels was then calculated, taking the 

difference in area circumscribed by the external and internal elastic laminae of 

pulmonary vessels associated with bronchioles.  Both WT littermates 

(17.82±0.99%, n=15) and L1cre-HIF-1α (14.55±0.99%, n=7) mice showed 

significantly increased medial thickness following hypoxic conditioning (Figure 

2B).  In comparison, the L1cre-HIF-2α (10.72±0.74%, n=7) mice showed little 

change in medial thickness relative to normoxic animals (8.45%±0.69%, n=7) 

(Supplemental Figure 3). 

Another indication of vascular remodelling is the relative amount of collagen 

deposition in the vasculature.  This was significantly higher in hypoxically 

conditioned WT control and L1cre-HIF-1α mice relative to L1cre-HIF-2α mice 

(Supplemental Figure 4). 

Pulmonary hypertension is also characterised by structural changes to the 

distal pulmonary vascular bed, including the presence of increased smooth 

muscle in small peripheral pulmonary arteries.  Pulmonary endothelial 

deletion of HIF-2α reduced smooth muscle cell coverage after hypoxic 

exposure, with very little α-SMA staining evident in the small peripheral 

vessels in these animals (Figure 3).  In comparison, both WT littermate control 

and L1cre-HIF-1α mice developed full and partial rings of α-SMA positive 

cells around vessels in hypoxia-conditioned animals (Figure 3). 

 

Reduced Arginase expression in HIF2α mutant mice 

Previous work from our laboratory and others has demonstrated that the two 

HIFα isoforms act to control NO homeostasis during hypoxia.  This occurs at 
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least in part through HIF1α regulation of the NOS2/iNOS gene, and HIF-2α 

regulation of the Arg-1 and Arg-2 genes (20, 21, 26, 33, 34). The enzyme Arg-

2 in particular has been implicated in reducing airway NO and promoting 

remodelling and collagen deposition in PAH patients (35, 36).   We found that 

the hypoxia up-regulation of both arg-1 and -2 was completely lost in hypoxia-

conditioned isolated pulmonary endothelial cells (Supplemental Figure 5A) 

and whole lung samples from L1cre-HIF-2α mice relative to WT littermate 

controls (Figure 4A).   

Consistent with these data, we found that plasma NO(X) concentrations were 

significantly reduced in HIF-1α mice and elevated in the HIF-2α mutant mice 

compared to WT control mice (Figure 4B); these observations fit a model 

whereby reduced arginase expression leads to increased availability of L-

arginine, and increased NO from NO synthase.  

Several recent studies have highlighted the role of endothelin-1(ET-1) in 

pulmonary hypertension, with elevated expression of this vasoactive agent in 

a number of patients. The promoter of ET-1 contains HIF transcription factor 

binding sites, hypoxia response elements (HRE); these sites bind both HIF-1α 

and HIF-2α (37, 38).  However, initial investigations in purified lung 

endothelial cells from wild-type and L1cre-HIF-2α mice showed little change in 

ET-1 expression after 24 hours exposure to hypoxia (Supplemental Figure 

5B).  Furthermore, the gene expression of ET-1 in the lungs of L1cre-HIF-1α 

and L1cre-HIF-2α mice was did not differ from levels seen in wild type 

controls following chronic hypoxic challenge (21 days at 10% O2) 

(Supplemental Figure 5C).  There was a trend towards a decrease in plasma 

ET-1 in both L1cre-HIF1α and L1cre-HIF2α mice following acute hypoxia, and 
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a statistically significant decrease in plasma ET-1 in L1cre-HIF2α mice 

following chronic hypoxia, when compared to wild type controls (Supplemental 

Figure 5D) 

 

Pulmonary endothelial arginase-1 deletion attenuates PAH 

Having established that pulmonary endothelial expression of Arg-1 is 

significantly reduced in the L1creHIF-2α mouse following chronic hypoxic 

exposure, we next sought to determine how the specific deletion of arginase-1 

in the pulmonary endothelium influenced the development of PAH.  The 

increase in RVSP normally observed following chronic hypoxic challenge (wt, 

41.7±0.8mm/Hg, n=7, p<0.0001) was significantly attenuated in mice with 

pulmonary endothelial arginase-1 deletion (31.2±1.0mmHg, n=7) (Figure 5A). 

Of note, the basal RVSP in L1cre-arg1 mice under normoxia (23.0±0.7mmHg, 

n=6) were similar to those seen in littermate WT control mice (24.3±0.3mmHg, 

n=5).  The ratio of right ventricular weight to left ventricle plus septum 

(RV/LS+S) was significantly higher in wild-type (0.39±0.01, n=6, p<0.001) 

when compared to L1cre-arg1 (0.33±0.01, n=9) mice, following chronic 

hypoxic exposure (Figure 5B). Both red cell counts and hemoglobin scores 

increased to a similar degree following hypoxic exposure (Supplemental 

Figure 6A). Wild type littermates showed significantly greater medial 

thickening (18.57%, n=15) when compared to L1cre-arg1 mice (14.35%, n=9) 

after exposure to chronic hypoxia (Figure 5C).  Similarly, the L1cre-arg1 mice 

showed substantially less α-SMA associated with pulmonary arteries in close 

proximity to terminal bronchioles when compared to wild type controls 

(Supplemental Figure 6B). Staining for α-SMA was also substantially reduced 
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in the peripheral pulmonary vasculature of these mutants (Figure 5D).  Given 

the importance of Arginase as a regulator of L-arginine availability and NOS-

mediated NO production, plasma NO(x) levels were analysed, as described 

above.  Deletion of pulmonary endothelial arg-1 significantly elevated plasma 

NO(x) relative to the levels seen in plasma from wild type control mice (Figure 

5E) 

 

 

Discussion 

The distribution of blood flow through all vascular beds is regulated through 

constant adjustments to vascular tone.  In the lung, these changes 

preferentially restrict blood flow to areas low in oxygen (2), in contrast to most 

systemic capillary networks, which react to hypoxia by increasing 

vasodilation(39, 40).  This response by the pulmonary vasculature is complex, 

involving virtually all cell types of the lung, and can drastically alter lung 

vascular morphology over time.  Remodelling of the pulmonary vasculature is 

the primary issue in pulmonary hypertension, leading as it does to decreased 

cardiac and pulmonary function.  In this study, we have shown that the 

endothelial cell specifically is a necessary element in these changes, and that 

the HIF isoform HIF-2α is in turn required for that endothelial response in 

hypoxia-induced PH.  We also observed the down-regulated expression of 

arginase in isolated pulmonary endothelial cells and whole lungs from L1cre-

HIF2a mice following chronic hypoxia, and demonstrate here that deletion of 

arginase-1 specifically in the pulmonary endothelium attenuated the 

development of hypoxic pulmonary hypertension.  Given the role of HIF-2α in 
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regulating arginases specifically, this indicates that a key aspect of the 

function of HIF-2α in PAH is its regulation of arginase expression. 

 

The pulmonary vascular response to acute hypoxia was first described by von 

Euler and Liljestrand approximately 75 years ago, and although the 

physiological consequences are well understood, the molecular regulation of 

the response, including its cellular components, is less clear (41).  The HIF 

pathway has been implicated in this process for some time, initially through 

demonstrations showing that mice hemizygous for HIF-1α or HIF-2α have 

diminished levels of pulmonary hypertension (17, 42).  These studies 

demonstrated the importance of the HIF pathway in the etiology of PAH, and 

subsequent work was able to show that hemizygosity for HIF-1α resulted in 

changes in myocyte hypertrophy and polarization (16).  In contrast, 

hemizygosity of HIF-2α revealed that endothelial changes resulting in PAH 

were partially blocked when HIF-2α was diminished.(17) 

 

More recent work has revealed that tissue-specific loss of HIF-1α in vascular 

smooth muscle results in some attenuation of hypoxia-induced pulmonary 

hypertension, but had no effect on a number of other pathologies associated 

with this syndrome; for example, this deletion had no effect on cardiac 

remodelling.(18) 

 

These data indicate that both HIF isoforms might play a role in the 

pathogenesis of hypoxia-induced PAH, however the individual roles of the two 

major isoforms of HIF, HIF-1α and HIF-2α, and the principal cell types 
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involved was still uncertain. To address these questions we utilized a cre-

recombinase transgene whose expression is restricted to the cells of the 

pulmonary endothelium (29). As described above, we found that in the 

pulmonary endothelium, HIF-2α, but not HIF-1α, plays a fundamental role in 

the development of PAH.  Loss of HIF-2α essentially eliminated both 

pulmonary vascular remodelling and the cardiovascular effects of chronic 

hypoxic exposure. 

Chronic environmental hypoxia results in pulmonary vascular remodelling, 

which elevates pulmonary vascular resistance, and leads to right ventricular 

pressure overload (43).  Structural changes include the appearance of smooth 

muscle-like cells in small pulmonary arterioles and medial and adventitial 

thickening of muscular and elastic vessels (44). In this study, hypoxia failed to 

induce smooth muscle accumulation in the pre-capillary vessels in HIF-2α 

pulmonary endothelial mutant animals, and the medial thickening of vessels 

associated with terminal bronchi was also substantially reduced.  These data 

are quite similar qualitatively to the effects seen in hemizygous HIF-2α mice, 

pointing to the pulmonary endothelium as the dominant cell type in mediating 

the effect of HIF-2α during pulmonary hypertensive remodelling. 

 

Collagen accumulation contributes to pulmonary artery stiffening in hypoxic 

induced pulmonary hypertension.  In clinical studies an increase in pulmonary 

artery stiffness has been found to be a strong predictor of mortality in patients 

with PAH (45).  In this report, prolonged exposure of wild-type and L1cre-HIF-

1α mice to hypoxia resulted in a significant accumulation of collagen around 

bronchial associated arteries; in comparison, deletion of pulmonary 
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endothelial HIF-2α significantly reduced collagen accumulation, likely 

contributing to the lower RVSP seen in these animals. 

 

Hypoxic modulation of endothelin-1 has been suggested by several studies as 

a potential mechanism driving hypoxic pulmonary vasoconstriction (17, 46, 

47). Although we cannot discount a role for pulmonary endothelial derived ET-

1 in the development of PAH, we observed similar acute hypoxic changes in 

plasma ET-1 expression following deletion of either of the HIF-α isoforms.  

Further investigations are clearly required to clarify the link between 

endothelin-1, HIFα expression, and PAH. 

 

The causal link between pulmonary hypertension and NO homeostasis has 

been extensively documented (35, 48), and this is reflected clinically in the 

finding that intrapulmonary nitrates, biochemical reaction products of NO in 

bronchoalveolar fluid, and exhaled NO are all diminished in human pulmonary 

hypertension (24, 49).  Interestingly, primary pulmonary endothelial cells 

isolated from PAH patients have substantially increased expression of arg-2 

(36), which would be predicted to decrease available L-arginine and reduce 

NOS-derived NO formation.  We have previously shown that both Arg1 and 

Arg2 are HIF-2α-dependent genes, and we show here that their expression in 

pulmonary endothelium is decreased in HIF-2α pulmonary endothelium 

mutants.  This should result in an increase in pulmonary endothelial NO, 

which itself has been shown to alleviate PAH experimentally (50).  Consistent 

with this hypothesis, genetic deletion of arg-1 resulted in a marked attenuation 

in the pathologies associated with PAH. Given a mechanistic link between 
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these findings and the etiology of PAH, future therapies to manipulate the 

control of NO homeostasis by the HIFα pathway should certainly be explored.  

 

Pulmonary hypertension due to chronic hypoxia is a progressive disease, that 

leads eventually to right heart failure and death.  The pathogenesis of this 

condition involves proliferation of endothelial and smooth muscle cells, 

resulting in vascular remodeling of the pulmonary arterioles. Here we identify 

an essential role for pulmonary endothelial HIF2α expression, and its 

regulation of arginase, in both the physiological response to acute hypoxia, 

and the vascular remodelling processes that characterise chronic hypoxic 

exposure. 
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Methods 

Animals.  All animals were housed in an Association and Accreditation of 

Laboratory Animal Care International-approved facility.  All protocols and 

surgical procedures were approved by the local and national animal care 

committees. 

Targeted deletion of HIF-1α, HIF-2α and arginase-1 in pulmonary endothelial 

cells was created by crossing (C57Bl6/j) homozygous for the floxed allele in 

HIF-1α, HIF-2α or arginase-1 into a background of Cre recombinase 

expression drive by the L1 (alk-1) promoter kindly donate by Dr Paul Oh, 

Florida University.(29)   Mice characterized as wild type (WT) were in all 

cases littermates of respective mutant mice, homozygous for conditional 

alleles but without the cre recombinase transgene. 

 

Measurement of Right Ventricular Systolic Pressure (RVSP).  For 

induction of PAH due to chronic hypoxia, groups of male mice (8-12 weeks) 

were maintained in a normobaric hypoxic chamber (FiO2 10%) for up to 21 

days. Mice were weighed then anesthetised (isoflurane) and right-sided heart 

catheterisation through the right jugular using a pressure-volume loop 

catheter (Millar).(51-53)  Bloods were taken for haemodynamic assessment. 

 

Right Ventricular Hypertrophy.  To measure the extent of right ventricular 

hypertrophy (RVH), the heart was removed and the right ventricule (RV) free 

wall was dissected from the left ventricle plus septum (LV+S), and weighed 

separately.(54)  The degree of RVH was determined from the ratio RV/LV+S. 
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Tissue Preparation.  In all animals the left lung was fixed in situ in the 

distended state by the infusion of 0.8% agarose into the trachea, and then 

placed in 10% paraformaldehyde before paraffin embedding.  The right lung 

was frozen in liquid nitrogen for mRNA extraction. 

 

Pulmonary Vascular Morphometry.  Lung tissues were stained with 

hematoxylin and eosin, sirius red or elastic van Gieson (EVG) stain to assess 

morphology (all Merck/BDH, Lutterworth UK).  To determine the degree of 

muscularization of small pulmonary arteries, serial lung tissue sections were 

stained with anti-smooth muscle α-actin (α-SMactin; DakoCytomation Ely UK) 

and von Willebrand factor (DakoCytomation).  Antibody staining was 

visualised using 3-3’ diaminobenzidine hydrochloride substrate 

(DakoCytomation) and counterstained with Carrazzi hematoxylin (Bios 

Shelmersdale UK).  Vessel medial thickness was measured using Image J 

software (MediaCybernetics, Bethesda MD) 

 

Haematological Analysis. Anti-coagulated blood was analysed using Vet 

abc haematology analyser (Horiba) according to the manufacturers 

instructions. 

 

Nitrite/Nitrate Analysis.  Blood samples were centrifuged to separate plasma 

and were passed through a column with a 10-kDa cut-off filter.  All samples 

were analysed for total NO(X) content using a NOA 280i (Siever, GE 

Healthcare) according to the manufacturers instructions. 
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RNA Analysis. Total RNA and DNA was isolated from the lung using TRI-

reagent (Sigma) followed by RNA clean-up and DNase digest using RNeasy 

column kits (Qiagen).  First-strand synthesis was performed with 1µg of total 

RNA using a high-capacity cDNA kit (Applied Biosystems) according to the 

manufacturers instructions.  Relative gene expression was determined by 

quantitative PCR (qPCR) (One-Step Plus Real-Time PCR System; Life 

Technologies) and was amplified in SYBR-Green master mix (Roche) and 

relevant primers from Qiagen.  Relative gene-expression levels were related 

to β-actin and B2M using the 2ΔΔCT method. 

 

Statistical Analysis. All data represents the mean (±SEM) of n separate 

experiments unless otherwise stated.  Difference between groups were 

assessed using t test unless otherwise stated.  A p value of <0.05 was 

considered significant. 
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Figure Legends 

Figure 1. Pulmonary endothelial HIF-2α modulates chronic hypoxic 

pulmonary hypertension. (A) Scatter plot (mean ± SEM) shows the effect of 

pulmonary endothelial HIFα on right ventricular systolic pressure (RVSP).  

Wild-type (WT) and L1cre-HIFα mice were housed in normoxia (N) or chronic 

hypoxia (H) (WT (N) n=9 (H) n=12; L1cre-HIF-1α (N) n= 6 (H) n=7; L1cre-HIF-

2α (N) n=11 (H) n=7). (B) Effect of pulmonary endothelial HIFα on right 

ventricular hypertrophy.  Scatter plot (mean ± SEM) show RV/LV+S weight 

ratio in mice exposed to normoxia (N) or chronic hypoxia (H) (WT (N) n=9 (H) 

n=12; L1cre-HIF-1α (N) n= 6 (H) n=7; L1cre-HIF-2α (N) n=11 (H) n=7). 

*P<0.05, **P<0.001, ***P<0.0001 

 

Figure 2. Pulmonary endothelial HIF-2α is essential for airway remodelling in 

chronic hypoxic pulmonary hypertension.  (A and B) Airway remodelling was 

determined in wild-type (WT) (n=15), L1cre-HIF-1α (n=7) and L1cre-HIF-2α 

(n=7) post chronic hypoxic challenge. (A) Histological sections of lung were 

immunostained with α−smooth-muscle actin(α-SMA), von Willebrand 

factor(vWF), and Elastic van Gieson (EVG).  Representative 

photomicrographs demonstrate the remarkable lack of remodelling in L1cre-

HIF-2α pulmonary arteries associated with terminal bronchi when compared 

to WT or L1cre-HIF-1α mice. (B) Scatter plot (mean ± SEM) shows the effect 

of pulmonary endothelial HIFα on vessel medial thickness.  Quantification of 

the intimal medial thickness achieved by staining lung sections with EVG.  

Measurement of vessel thickness as a percentage of total vessel area by 

image J software. ***P<0.0001. 
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Figure 3.  Loss of HIF-2α in pulmonary endothelial cells reduces the degree 

of muscularization of peripheral arteries.  Stacked bar chart showing the 

degree of muscularization of peripheral pulmonary arteries in lung sections 

from wild-type (WT) (n=15), L1cre-HIF-1α (n=9) and L1cre-HIF-2α (n=7) mice.  

Representative photomicrographs immunostained for α-smooth muscle actin 

showing near and complete ring formation in peripheral vessel of WT and 

L1cre-HIF-1α mice when compared to L1cre-HIF-2α mice (arrows point to 

distal vessels). 

 

Figure 4.  Endothelial deletion of HIF-2α maintains higher plasma nitrate 

levels potentially through lower arginase expression in pulmonary 

endothelium.  (A) qPCR analysis of arginase-I/-II, NOS2, and VEGF mRNA 

from whole lung samples of wild-type (WT) (open bar, n=7), L1cre-HIF-1α 

(dark grey bar, n=7) and L1cre-HIF-2α (closed bar, n=6). (B) Total nitric oxide 

was determined in the plasma by the conversion of NOx to NO using a nitric 

oxide analyser (Siever).  Data shown as scatter plot with mean ± SEM from 

WT (n=7), L1cre-HIF-1α (n=7) and L1cre-HIF-2α (n=6) post chronic hypoxia 

challenge. *P<0.05. 

 

Figure 5.  Pulmonary endothelial deletion of Arg-1 attenuates hypoxic 

pulmonary hypertensive phenotype.   A) Scatter plot (mean ± SEM) shows the 

effect of pulmonary endothelial Arg-1 on right ventricular systolic pressure 

(RVSP).  Wild-type (WT) and L1cre-Arg1 mice were housed in normoxia (N) 

or chronic hypoxia (H) (WT (N) n=5 (H) n=7; L1cre-Arg1 (N) n= 6 (H) n=7. (B) 
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Effect of pulmonary endothelial Arg-1 on right ventricular hypertrophy.  Scatter 

plot (mean ± SEM) show RV/LV+S weight ratio in mice exposed to normoxia 

(N) or chronic hypoxia (H) (WT (N) n=6 (H) n=6; L1cre-Arg1 (N) n= 7 (H) n=9. 

(C) Airway remodelling was determined in wild-type (WT) (n=8), L1cre-Arg1 

(n=10).  Quantification of the intimal medial thickness achieved by staining 

lung sections with EVG.  Measurement of vessel thickness as a percentage of 

total vessel area by image J software. (D) Stacked bar chart showing the 

degree of muscularization of peripheral pulmonary arteries in lung sections 

from wild-type (WT) (n=5), L1cre-Arg1 (n=6) mice.  Representative 

photomicrographs immunostained for α-smooth muscle actin showing near 

and complete ring formation in peripheral vessel of WT mice when compared 

to L1cre-Arg1 mice. (E) Total nitric oxide was determined in the plasma by the 

conversion of NOx to NO using a nitric oxide analyser (Siever).  Data shown 

as scatter plot with mean ± SEM from WT (n=6), L1cre-Arg1 (n=8) post 

chronic hypoxia challenge; *P<0.05, **P<0.001, ***P<0.0001. 
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Supplemental Figures: 

 

Supplemental Figure 1. L1cre specificity for pulmonary endothelial cells.  

Representative photomicrographs from 3 independent mice (A) show bright-field 

structure of frozen lung sections, strong positive fluorescent endothelial cells and 

combined overlay.  (B) Frozen tissue sections taken from representative organs 

in the same L1cre mouse.  Little to no positive fluorescent cells were seen in 

other tissues. (C) L1cre deletion efficiency of HIF-2α in isolated pulmonary 

endothelial cells and other selected organs. Isolated endothelial data shown as 

single experiment from six pooled animals.   

 

Supplemental Figure 2.  Haematological and body weight response to chronic 

hypoxia.  (A and B)  Red blood cell counts (RBC), haemoglobin (HGB) scores 

and white cell counts (WBC) did not deviate between the groups (A) Data shown 

as scatter graph as mean ± SEM of RBC and HGB from normoxic (N) and 

chronic hypoxic (H) housed wild-type (WT) (n=9 and n=15) L1cre-HIF-1α (n=9 

and n=8) and L1cre-HIF-2α (n=7 and n=8).  (C) Bar graph of mean ± SEM body 

weight, normoxic (N) and after chronic hypoxia (H) from WT (n=8), L1cre-HIF-1α 

(n=7) and L1cre-HIF-2α (n=8). 

 

Supplemental Figure 3.  Histological sections from paraffin wax embedded 

lungs were immunostained for αSmooth-Muscle actin, von Willebrand factor, and 



stained for hematoxylin & eosin and Elastic van Gieson (EVG).  Representative 

photomicrographs show no remodelling in normoxic housed L1cre-HIF-1α or 

L1cre-HIF-2α mice when compared to wild-type control. 

 

Supplemental Figure 4. Deletion of pulmonary endothelial HIF-2α decreases 

collagen deposition around arteries associated with terminal bronchus.  

Histological lung sections were stained using Sirius red and then analysed by 

image J software.  Data shown as bar graph for wild-type (WT) (open bar, n=7), 

L1cre-HIF-1α (grey bar, n=6) and L1cre-HIF-2α (closed bar, n=7).  

Representative photomicrographs show the degree of collagen deposition 

following chronic hypoxic challenge. **P<0.001 

 

 

Supplemental Figure 5.  Arginase and Endothelin-1 expression in isolated 

pulmonary endothelial cells and whole lung.  (A and B) QPCR data from a single 

experiment of six pool animals, pulmonary endothelial cells isolated from wild-

type or L1cre-HIF-2α mice culture in normoxia or hypoxia for 24hrs. (C) QPCR 

analysis of ET-1 expression in whole lung tissue from wild-type (n=15), L1cre-

HIF-1α (n=7) and L1cre-HIF-2α (n=6) mice following chronic hypoxic challenge.  

(C) Acute hypoxic increase in plasma endothelin-1 was inhibited in the L1cre-



HIF1a (n=4) and L1cre-HIF2a (n=4) mice when compared to wild-type (n=6). 

Data bar shown as mean ± SEM 

 

Supplemental Figure 6. Red blood cell counts (RBC), haemoglobin (HGB) did 

not deviate between the groups (A) Data shown as scatter graph as mean ± SEM 

of RBC and HGB from normoxic (N) and chronic hypoxic (H) housed wild-type 

(WT) (n=6(N) and 4(H)) L1cre-Arg1 (n=6 (N) and n=9(H)) (B) Histological 

sections of lung were immunostained with α−smooth-muscle actin(α-SMA), von 

Willebrand factor(vWF), and Elastic van Gieson (EVG).  Representative 

photomicrographs demonstrate the attenuation of remodelling in L1cre-Arg1 

pulmonary arteries associated with terminal bronchi when compared to WT 

controls. 
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