138 research outputs found

    Myth as a Means of Ordering and Organizing Social Reality

    Get PDF
    This study investigates the phenomenon of social myth as a factor of forming and transforming the consciousness of social actors. It is defined that one of the factors of appealing to mythological representation of reality is the crisis of scientific orientations of modernism. In this plane, the article studies phenomenological receptions of myth as well as the process of mythologization of modern social reality. Moreover, attention is drawn to the fact that mythologization fixes an idea of social reality and its axiological (value) dimension in the consciousness of separate individuals and their groups. Myths are axiological indicators; the more controversial society values are the greater number of myths is produced by social consciousness to eliminate these contradictions. The difference between modern and archaic myth has both qualitative and quantitative aspects. Modern society generates a great number of myths with much more narrow content. This is a consequence of "specialization" of myths, their orientation towards solving particular local tasks: political, economic, etc. Functional and structural changes of social myths can be accounted for by critical, permanently transitional condition of society in which myth compensates the unformed elements of new social practices. However, the content side of myth is not a crisis but social request and values of particular culture. The question about the necessity to fight against myths probably should be answered negatively if we don’t mean the most dangerous myths posing a serious threat for society. Myths are in harmony with social consciousness and arise in places where there is a fault between current and desirable normativity. Thus, when social practices become stable social consciousness itself displaces and nullifies myths that are responsible for harmonization of new order and they become demanded

    Development and Modeling of an Onion Harvester with an Automated Separation System

    No full text
    One of the most important problems during the implementation of any technology is to reduce labor costs, energy, and resource conservation while increasing the yield of cultivated crops and, as a result, reducing the cost of production. Despite a significant amount of scientific research devoted to the problem of energy and resource conservation in the cultivation and harvesting of agricultural crops and the development of mechanization tools that ensure the high-quality performance of technological operations, there remain issues that have not been fully resolved to date. In addition, not all the results of known theoretical and experimental studies can be directly applied to intensify the process of harvesting root crops since the quality indicators of marketable products depend on the type and technological parameters of the separating working bodies. This article presents the design of a rod elevator with an adjustable angle of inclination of the web, which reduces damage to commercial products of root crops and bulbs with maximum completeness of separation. A laboratory facility has been developed to substantiate the design and technological parameters of a separating system with an adjustable web inclination angle. Based on the results of theoretical and experimental studies, a machine for harvesting onions with an adjustable blade inclination angle has been developed, which provides an increase in the quality indicators of onion harvesting at optimal values of the parameters: (1) translational speed of movement of the rod elevator with an adjustable web inclination angle of 1.7 m/s with a 98.4% completeness of separation and 1.7% damage to the bulbs; (2) translational speed of the movement of the machine for harvesting root crops and onions 1.0 m/s with a 98.5% separation completeness and 1.1% damage to the bulbs; (3) digging depth of the digging plowshare equal to 0.02 m, with an onion heap separation completeness of more than 98% and product damage of less than 1.4%. The results of theoretical and experimental studies of a rod elevator to substantiate the design and technological parameters during its interaction with a heap of onion are presented. Basic design and technological parameters of the studied rod elevator are substantiated, namely, the distance S1 of the movement of the rod of the actuators, the angle a1 of the longitudinal inclination of the surface of the rod elevator relative to the horizon, and differential equations of motion of the onion-sowing pile element on the surface of the rod elevator with an adjustable angle of inclination of the web

    Development and Modeling of an Onion Harvester with an Automated Separation System

    No full text
    One of the most important problems during the implementation of any technology is to reduce labor costs, energy, and resource conservation while increasing the yield of cultivated crops and, as a result, reducing the cost of production. Despite a significant amount of scientific research devoted to the problem of energy and resource conservation in the cultivation and harvesting of agricultural crops and the development of mechanization tools that ensure the high-quality performance of technological operations, there remain issues that have not been fully resolved to date. In addition, not all the results of known theoretical and experimental studies can be directly applied to intensify the process of harvesting root crops since the quality indicators of marketable products depend on the type and technological parameters of the separating working bodies. This article presents the design of a rod elevator with an adjustable angle of inclination of the web, which reduces damage to commercial products of root crops and bulbs with maximum completeness of separation. A laboratory facility has been developed to substantiate the design and technological parameters of a separating system with an adjustable web inclination angle. Based on the results of theoretical and experimental studies, a machine for harvesting onions with an adjustable blade inclination angle has been developed, which provides an increase in the quality indicators of onion harvesting at optimal values of the parameters: (1) translational speed of movement of the rod elevator with an adjustable web inclination angle of 1.7 m/s with a 98.4% completeness of separation and 1.7% damage to the bulbs; (2) translational speed of the movement of the machine for harvesting root crops and onions 1.0 m/s with a 98.5% separation completeness and 1.1% damage to the bulbs; (3) digging depth of the digging plowshare equal to 0.02 m, with an onion heap separation completeness of more than 98% and product damage of less than 1.4%. The results of theoretical and experimental studies of a rod elevator to substantiate the design and technological parameters during its interaction with a heap of onion are presented. Basic design and technological parameters of the studied rod elevator are substantiated, namely, the distance S1 of the movement of the rod of the actuators, the angle a1 of the longitudinal inclination of the surface of the rod elevator relative to the horizon, and differential equations of motion of the onion-sowing pile element on the surface of the rod elevator with an adjustable angle of inclination of the web

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV

    No full text
    International audienceAnisotropic flow coefficients, vn_{n}, non-linear flow mode coefficients, χn,mk_{n,mk}, and correlations among different symmetry planes, ρn,mk_{n,mk} are measured in Pb-Pb collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval 0.2 < pT_{T}< 5.0 GeV/c within the pseudorapidity interval 0.4 < |η| < 0.8 as a function of collision centrality. The vn_{n} coefficients and χn,mk_{n,mk} and ρn,mk_{n,mk} are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system.[graphic not available: see fulltext

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQ and energy E, within a cone of angular size mQ/E around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    J/ψ production as a function of charged-particle multiplicity in p–Pb collisions at √sNN = 8.16 TeV

    No full text
    Inclusive J/ψ yields and average transverse momenta in p-Pb collisions at a center-of-mass energy per nucleon pair sNN−−−√ = 8.16 TeV are measured as a function of the charged-particle pseudorapidity density with ALICE. The J/ψ mesons are reconstructed at forward (2.03<ycms<3.53) and backward (−4.46<ycms<−2.96) center-of-mass rapidity in their dimuon decay channel while the charged-particle pseudorapidity density is measured around midrapidity. The J/ψ yields at forward and backward rapidity normalized to their respective average values increase with the normalized charged-particle pseudorapidity density, the former showing a weaker increase than the latter. The normalized average transverse momenta at forward and backward rapidity manifest a steady increase from low to high charged-particle pseudorapidity density with a saturation beyond the average value
    corecore