45 research outputs found

    Real Time Flame Monitoring of Gasifier and Injectors

    No full text
    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or failed gasifier injectors. The sensor developed under previous tasks was used to assess the spectroscopic characteristics of the gasifier flame. The obtained spectral data were successfully translated into flame temperature measurements. It was also demonstrated that the reduced spectral data could be very well correlated with very important gasification process parameters such as the air/fuel and water/fuel ratio. Any of these parameters (temperature, air/fuel, and water/fuel) is sufficient to assess burner wear; however, the tested sensor was capable of monitoring all three of them plus the flame shape as functions of burner wear. This will likely be a very powerful tool which should enable significant improvements in gasifier efficiency, reliability, and availability. The sensor technology was presented to the projectâs industrial partner (ConocoPhillips). The partner expressed its strong interest in continuing to participate in the field validation phase of GTI's Flame Monitor Project. Finally the sensor was tested in the PWR (Pratt & Whitney Rocketdyne) gasification plant located at GTIâs research campus and at the ConocoPhillips industrial scale gasifier at Wabash River Indiana. The field trials of the GTI Gasifier sensor modified to withstand high temperature and pressure corrosive atmosphere of the industrial entrain flow gasifier. The project team successfully demonstrated the Gasifier Sensor system ability to monitor gasifier interior temperature maintaining unobstructed optical access for in excess of six week without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage and required minor cleanup of the optics

    Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    No full text
    ABSTRACT Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 "Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants". The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and α -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented

    Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    No full text
    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power
    corecore