15 research outputs found

    Wood Anatomy of Mackinlaya and Apiopetalum (Araliaceae) and Its Systematic Implications

    No full text
    Volume: 87Start Page: 171End Page: 18

    Systematic wood anatomy of Myodocarpus, Delarbrea, and Pseudosciadium (Araliaceae)

    No full text
    Volume: 19Start Page: 61End Page: 7

    Patterns of Diversity of Floral Symmetry in Angiosperms: A Case Study of the Order Apiales

    No full text
    Floral symmetry is widely known as one of the most important structural traits of reproductive organs in angiosperms. It is tightly related to the shape and arrangement of floral parts, and at the same time, it plays a key role in general appearance (visual gestalt) of a flower, which is especially important for the interactions of zoophilous flowers with their pollinators. The traditional classification of floral symmetry divides nearly all the diversity of angiosperm flowers into actinomorphic and zygomorphic ones. Within this system, which is useful for ecological studies, many variations of symmetry appear to be disregarded. At the same time, the diversity of floral symmetry is underpinned not only by ecological factors, but also by morphogenetic mechanisms and constraints. Sometimes it is not an easy task to uncover the adaptive or developmental significance of a change of the floral symmetry in a particular lineage. Using the asterid order Apiales as a model group, we demonstrate that such changes can correlate with the merism of the entire flower or of its particular whorl, with the relative orientation of gynoecium to the rest of the flower, with the presence of sterile floral elements and other morphological characters. Besides, in some taxa, the shape and symmetry of the flower change in the course of its development, which should be taken in consideration in morphological comparisons and evaluations of synapomorphies in a particular clade. Finally, we show that different results can be obtained due to employment of different approaches: for instance, many flowers that are traditionally described as actinomorphic turn out to be disymmetric, monosymmetric, or asymmetric from a more detailed look. The traditional method of division into actinomorphy and zygomorphy deals with the general appearance of a flower, and mainly considers the shape of the corolla, while the geometrical approach handles the entire three-dimensional structure of the flower, and provides an exact number of its symmetry planes

    Phylogenetic position of the genus Ferula (Apiaceae) and its placement in tribe Scandiceae as inferred from nrDNA ITS sequence variation

    No full text
    Abstract Recent molecular systematic investigations suggested that Ferula, an umbellifer genus of about 170 species, is polyphyletic, with its members placed in the apioid superclade and within tribe Scandiceae. We analyzed ITS sequence variation from 134 accessions of Apiaceae, including 83 accessions (74 species) of Ferula to ascertain the phylogenetic position of the genus within the family. Phylogenetic analyses of these data using maximum parsimony, Bayesian, and neighbor-joining methods support the monophyly of Ferula upon the addition of Dorema and Leutea (as Ferula sensu lato) and its placement in tribe Scandiceae. Ferula sensu is closely allied with other major lineages of Scandiceae, corresponding to subtribes Scandicinae, Daucinae, and Torilidinae. Therefore, we recognize the Ferula clade as subtribe Ferulinae. Another addition to tribe Scandiceae is a clade composed of genera Glaucosciadium and Mozaffariania. The three accessions of Ferula misplaced in the apioid superclade represent a species of Silaum

    Cryptocarya chinensis from the Upper Pleistocene of South China and its biogeographic and paleoecological implications

    No full text
    Summary: Anatomical structure of mummified wood of Cryptocarya (Lauraceae) from the Upper Pleistocene of Maoming, South China and the woods of 15 extant species of Cryptocarya from China and Malaysia were examined. The fossil wood has been convincingly attributed to extant species Cryptocarya chinensis (Hance) Hemsl. This is the first reliable fossil record of Cryptocarya in Asia. The finding combined with the results of Biomod2 species distribution modeling suggest that the range of C. chinensis in the Late Pleistocene in South China and North Vietnam was very restricted due to increased continental aridity and enhanced temperature seasonality in this region. Thus, modern populations of C. chinensis in Maoming can be considered as glacial relicts. The mines (larval tunnels) produced by the larvae of flies from the genus Phytobia Lioy (Agromyzidae, Diptera) were observed in fossil wood under study. These cambial miners have never been reported in Cryptocarya
    corecore