149 research outputs found

    Probing quantum criticality and symmetry breaking at the microscopic level

    Full text link
    We report on an experimental study of the Lipkin-Meshkov-Glick model of quantum spins interacting at infinite range in a transverse magnetic field, which exhibits a ferromagnetic phase transition in the thermodynamic limit. We use Dysprosium atoms of electronic spin J=8J=8, subjected to a quadratic Zeeman light shift, to simulate 2J=162J=16 interacting spins 1/21/2. We probe the system microscopically using single magnetic sublevel resolution, giving access to the spin projection parity, which is the collective observable characterizing the underlying Z2\mathbb{Z}_2 symmetry. We measure the thermodynamic properties and dynamical response of the system, and study the quantum critical behavior around the transition point. In the ferromagnetic phase, we achieve coherent tunneling between symmetry-broken states, and test the link between symmetry breaking and the appearance of a finite order parameter.Comment: 13 pages, 13 figure

    Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2

    Get PDF
    So far little is known on the functional role of phosphorylation in the heat stress response of plants. Here we present evidence that heat stress activates the Arabidopsis mitogen-activated protein kinase MPK6. In vitro and in vivo evidence is provided that MPK6 specifically targets the major heat stress transcription factor HsfA2. Activation of MPK6 results in complex formation with HsfA2. MPK6 phosphorylates HsfA2 on T249 and changes its intracellular localisation. Protein kinase and phosphatase inhibitor studies indicate that HsfA2 protein stability is regulated in a phosphorylation-dependent manner, but this mechanism is independent of MPK6. Overall, our data show that heat stress-induced targeting of HsfA2 by MPK6 participates in the complex regulatory mechanism how plants respond to heat stress

    Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility

    Get PDF
    BACKGROUND Mammalian spermatogenesis is a process that involves a complex expression program in both somatic and germ cells present in the male gonad. A number of studies have attempted to define the transcriptome of male meiosis and gametogenesis in rodents and primates. Few human transcripts, however, have been associated with testicular somatic cells and germ cells at different post-natal developmental stages and little is known about their level of germline-specificity compared with non-testicular tissues. METHODS We quantified human transcripts using GeneChips and a total of 47 biopsies from prepubertal children diagnosed with undescended testis, infertile adult patients whose spermatogenesis is arrested at consecutive stages and fertile control individuals. These results were integrated with data from enriched normal germ cells, non-testicular expression data, phenotype information, predicted regulatory DNA-binding motifs and interactome data. RESULTS Among 3580 genes for which we found differential transcript concentrations in somatic and germ cells present in human testis, 933 were undetectable in 45 embryonic and adult non-testicular tissues, including many that were corroborated at protein level by published gene annotation data and histological high-throughput protein immunodetection assays. Using motif enrichment analyses, we identified regulatory promoter elements likely involved in germline development. Finally, we constructed a regulatory disease network for human fertility by integrating expression signals, interactome information, phenotypes and functional annotation data. CONCLUSIONS Our results provide broad insight into the post-natal human testicular transcriptome at the level of cell populations and in a global somatic tissular context. Furthermore, they yield clues for genetic causes of male infertility and will facilitate the identification of novel cancer/testis genes as targets for cancer immunotherapie

    Pregnane × Receptor (PXR) expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical efficacy of chemotherapy in colorectal cancer is subjected to broad inter-individual variations leading to the inability to predict outcome and toxicity. The topoisomerase I inhibitor irinotecan (CPT-11) is worldwide approved for the treatment of metastatic colorectal cancer and undergoes extensive peripheral and tumoral metabolism. PXR is a xenoreceptor activated by many drugs and environmental compounds regulating the expression of drug metabolism and transport genes in detoxification organs such as liver and gastrointestinal tract. Considering the metabolic pathway of irinotecan and the tissue distribution of Pregnane × Receptor (PXR), we hypothesized that PXR could play a key role in colon cancer cell response to irinotecan.</p> <p>Results</p> <p>PXR mRNA expression was quantified by RT-quantitative PCR in a panel of 14 colon tumor samples and their matched normal tissues. PXR expression was modulated in human colorectal cancer cells LS174T, SW480 and SW620 by transfection and siRNA strategies. Cellular response to irinotecan and its active metabolic SN38 was assessed by cell viability assays, HPLC metabolic profiles and mRNA quantification of PXR target genes. We showed that PXR was strongly expressed in colon tumor samples and displayed a great variability of expression. Expression of hPXR in human colorectal cancer cells led to a marked chemoresistance to the active metabolite SN38 correlated with PXR expression level. Metabolic profiles of SN38 showed a strong enhancement of SN38 glucuronidation to the inactive SN38G metabolite in PXR-expressing cells, correlated with an increase of UDPglucuronosyl transferases UGT1A1, UGT1A9 and UGT1A10 mRNAs. Inhibition of PXR expression by lentivirus-mediated shRNA, led to SN38 chemoresistance reversion concomitantly to a decrease of UGT1A1 expression and SN38 glucuronidation. Similarly, PXR mRNA expression levels correlated to UGT1A subfamily expression in human colon tumor biopsies.</p> <p>Conclusion</p> <p>Our results demonstrate that tumoral metabolism of SN38 is affected by PXR and point to potential therapeutic significance of PXR quantification in the prediction of irinotecan response. Furthermore, our observations are pharmacologically relevant since many patients suffering from cancer diseases are often exposed to co-medications, food additives or herbal supplements able to activate PXR. A substantial part of the variability observed among patients might be caused by such interactions</p

    Reference gene selection for head and neck squamous cell carcinoma gene expression studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is no longer adequate to choose reference genes blindly. We present the first study that defines the suitability of 12 reference genes commonly used in cancer studies (<it>ACT, ALAS, B2M, GAPDH, HMBS, HPRT, KALPHA, RPS18, RPL27, RPS29, SHAD </it>and <it>TBP</it>) for the normalization of quantitative expression data in the field of head and neck squamous cell carcinoma (HNSCC).</p> <p>Results</p> <p>Raw expression levels were measured by RT-qPCR in HNSCC and normal matched mucosa of 46 patients. We analyzed the expression stability using geNorm and NormFinder and compared the expression levels between subgroups. In HNSCC and/or normal mucosa, the four best normalization genes were <it>ALAS, GAPDH, RPS18 </it>and <it>SHAD </it>and the most stable combination of two genes was <it>GAPDH-SHAD</it>. We recommend using <it>KALPHA-TBP </it>for the study of T1-T2 tumors, <it>RPL27-SHAD </it>for T3-T4 tumors, <it>KALPHA-SHAD </it>for N0 tumors, and <it>ALAS-TBP </it>for N+ tumors. <it>ACT, B2M, GAPDH, HMBS, HPRT, KALPHA, RPS18, RPS29, SHAD </it>and <it>TBP </it>were slightly misregulated (<1.7-fold) between tumor and normal mucosa but can be used for normalization, depending on the resolution required for the assay.</p> <p>Conclusion</p> <p>In the field of HNSCC, this study will guide researchers in selecting the most appropriate reference genes from among 12 potentially suitable reference genes, depending on the specific setting of their experiments.</p

    Backbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda

    Get PDF
    Lysozyme from lambda bacteriophage (λ lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, λ lysozyme consists of two structural domains connected by a helix, and has its catalytic residues located at the interface between these two domains. An interesting feature of λ lysozyme, when compared to the well-characterised hen egg-white lysozyme, is its lack of disulfide bridges; this makes λ lysozyme an interesting system for studies of protein folding. A comparison of the folding properties of λ lysozyme and hen lysozyme will provide important insights into the role that disulfide bonds play in the refolding pathway of the latter protein. Here we report the 1H, 13C and 15N backbone resonance assignments for λ lysozyme by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for detailed investigation of the refolding pathway using pulse-labelling hydrogen/deuterium exchange experiments monitored by NMR
    corecore