27 research outputs found
Extracellular ATP triggers proteolysis and cytosolic Ca²⁺ rise in Plasmodium berghei and Plasmodium yoelii malaria parasites.
BACKGROUND: Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways underlying its survival within the host. METHODS: Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca²⁺ signalling in Plasmodium berghei and Plasmodium yoelii malaria parasites were investigated. RESULTS: The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 μM) and PPADS (50 μM) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100, 200 and 500 μM), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 μM) to isolated parasites previously loaded with Fluo4/AM in a Ca²⁺-containing medium led to an increase in cytosolic calcium. This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 μM), TNP-ATP (50 μM) or the purinergic blockers KN-62 (10 μM) and Ip5I (10 μM). Incubating P. berghei infected cells with KN-62 (200 μM) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 μM) led to an increase in rings forms (82% ± 4, n = 11) and a decrease in trophozoite forms (18% ± 4, n = 11). CONCLUSIONS: The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that MSP1 is one target in this pathway
Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS) in the Human Malaria Parasite Plasmodium falciparum
There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members
Blocking IP3 signal transduction pathways inhibits melatonin-induced Ca2+ signals and impairs P. falciparum development and proliferation in erythrocytes.
Inositol 1,4,5 trisphosphate (IP3) signaling plays a crucial role in a wide range of eukaryotic processes. In Plasmodium falciparum, IP3 elicits Ca2+ release from intracellular Ca2+ stores, even though no IP3 receptor homolog has been identified to date. The human host hormone melatonin plays a key role in entraining the P. falciparum life cycle in the intraerythrocytic stages, apparently through an IP3-dependent Ca2+ signal. The melatonin-induced cytosolic Ca2+ ([Ca2+]cyt) increase and malaria cell cycle can be blocked by the IP3 receptor blocker 2-aminoethyl diphenylborinate (2-APB). However, 2-APB also inhibits store-operated Ca2+ entry (SOCE). Therefore, we have used two novel 2-APB derivatives, DPB162-AE and DPB163-AE, which are 100-fold more potent than 2-APB in blocking SOCE in mammalian cells, and appear to act by interfering with clustering of STIM proteins. In the present work we report that DPB162-AE and DPB163-AE block the [Ca2+]cyt rise in response to melatonin in P. falciparum, but only at high concentrations. These compounds also block SOCE in the parasite at similarly high concentrations suggesting that P. falciparum SOCE is not activated in the same way as in mammalian cells. We further find that DPB162-AE and DPB163-AE affect the development of the intraerythrocytic parasites and invasion of new red blood cells. Our efforts to episomally express proteins that compete with native IP3 receptor like IP3-sponge and an IP3 sensor such as IRIS proved to be lethal to P. falciparum during intraerythrocytic cycle. The present findings point to an important role of IP3-induced Ca2+ release in intraerythrocytic stage of P. falciparum
Kinin B1 receptor deficiency protects mice fed by cafeteria diet from abnormal glucose homeostasis
The kallikrein–kinin system has been implicated in body weight and glucose homeostasis. Their major effectors act by binding to the kinin B2 and B1 receptors. It was assessed the role of the kinin B1 receptor in weight and glucose homeostasis in B1 receptor knockout mice (B1RKO) subjected to a cafeteria diet (CAF). Wild-type (WT) and B1RKO male mice (C57BL/6 background; 8 weeks old) were fed a standard diet (SD) or CAF for 14 weeks, ad libitum, and four groups were formed: WT-SD; B1RKO-SD; WT-CAF; B1RKO-CAF. Body weight and food intake were assessed weekly. It was performed glucose tolerance (GTT) and insulin tolerance tests (ITT), and HOMA-IR, HOMA-β and HOMA-β* 1/HOMA-IR were calculated. Islets from WT and B1RKO were isolated in order to measure the insulin secretion. Western blot was used to assess the hepatic AKT phosphorylation and qPCR to assess gene expression. CAF induced a higher body mass gain in B1RKO compared to WT mice. CAF diet increased epididymal fat depot mass, hepatic fat infiltration and hepatic AKT phosphorylation in both genotypes. However, B1RKO mice presented lower glycemic response during GTT when fed with CAF, and a lower glucose decrease in the ITT. This higher resistance was overcomed with higher insulin secretion when stimulated by high glucose, resulting in higher glucose uptake in the GTT when submitted to CAF, despite lower insulin sensitivity. Islets from B1RKO delivered 4 times more insulin in 3-month-old mice than islets from WT. The higher insulin disposition index and high insulin delivery of B1RKO can explain the decreased glucose excursion during GTT. In conclusion, CAF increased the β-cell function in B1RKO mice, compensated by the diet-induced insulin resistance and resulting in a healthier glycemic response despite the higher weight gain
Screening of ligands for seven transmembrane domain receptor candidates in the parasite Plasmodium falciparum.
O parasita da malária Plasmodium falciparum percebe o ambiente em que se encontra, elaborando respostas celulares adequadas, que envolvem secreção de proteínas, crescimento e diferenciação celular. Fatores relacionados com a geração de segundos-mensageiros e proteínas efetoras da sinalização celular estão descritos na literatura. Porém, a função de receptores responsáveis pela percepção de estímulos extracelulares no parasita é um tema pouco explorado. A identificação in silico de receptores de sete domínios transmembrânicos putativos no genoma de P. falciparum possibilitou a exploração da função dos mesmos. A tese caracteriza funcionalmente dois receptores, PFSR10 e PFSR25. A expressão proteica dos receptores foi demonstrada em fases eritrocíticas de P. falciparum. Os receptores possuem candidatos a parceiros moleculares que executam diversas funções celulares, entre elas invasão do eritrócito, endocitose e exocitose. Os receptores foram transfectados em células de mamíferos e, através de ensaios de dinâmica de cálcio de high-throughput, sugere-se que PFSR10 codifique um receptor que participa na percepção de ATP extracelular e que PFSR25 codifique um sensor de KCl. O trabalho também sugere que KCl modula cálcio citosólico em P. falciparum e que parasitas nocaute para PFSR25 são incapazes de modular cálcio citosólico em resposta a KCl.The malaria parasite P. falciparum perceives its milieu and elaborates adequate intracellular responses, that involve protein secretion, growth and cell differentiation. Factors related to second messengers generation and effectors of cell signaling are described in the literature. However, the function of receptors responsible for stimulus perception remains elusive. The in silico identification of putative seven transmembrane receptors in the Plasmodium falciparum genome allowed the exploration of their function. In the thesis, two putative receptors were characterized, PFSR10 and PFSR25. The proteic expression of the receptors was demonstrated in erythrocytic stages of P. falciparum. The receptors have putative interaction partners that participate in cellular functions such as invasion, exocytosis and endocytosis.The receptors were transfected in mammalian cells and, through high-throughput calcium dynamics assays, it is suggested that PFSR10 codes for a receptor that participates in extracellular ATP perception and that PFSR25 codes for a KCl sensor. It is also suggested that KCl modulates cytosolic calcium in response to KCl and that knockout parasites for PFSR25 are incapable of modulating cytosolic calcium in response to KCl
Generation of second messengers in Plasmodium
Signalling in malaria parasites is a field of growing interest as its components may prove to be valuable drug targets, especially when one considers the burden of a disease that is responsible for up to 500 million infections annually. The scope of this review is to discuss external stimuli in the parasite life cycle and the upstream machinery responsible for translating them into intracellular responses, focussing particularly on the calcium signalling pathway. (C) 2012 Published by Elsevier Masson SAS on behalf of Institut Pasteur.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)INCT-InBqmedINCTInBqmedPronex-Malaria (CNPq-FAPESP - DECIT)PronexMalaria (CNPqFAPESP DECIT)FAPESPFAPES
Genome-Wide Detection of Serpentine Receptor-Like Proteins in Malaria Parasites
Serpentine receptors comprise a large family of membrane receptors distributed over diverse organisms, such as bacteria, fungi, plants and all metazoans. However, the presence of serpentine receptors in protozoan parasites is largely unknown so far. In the present study we performed a genome-wide search for proteins containing seven transmembrane domains (7TM) in the human malaria parasite Plasmodium falciparum and identified four serpentine receptor-like proteins. These proteins, denoted PfSR1, PfSR10, PfSR12 and PfSR25, show membrane topologies that resemble those exhibited by members belonging to different families of serpentine receptors. Expression of the pfsrs genes was detected by Real Time PCR in P. falciparum intraerythrocytic stages, indicating that they potentially code for functional proteins. We also found corresponding homologues for the PfSRs in five other Plasmodium species, two primate and three rodent parasites. PfSR10 and 25 are the most conserved receptors among the different species, while PfSR1 and 12 are more divergent. Interestingly, we found that PfSR10 and PfSR12 possess similarity to orphan serpentine receptors of other organisms. The identification of potential parasite membrane receptors raises a new perspective for essential aspects of malaria parasite host cell infection.FAPESP[fellowship]CNPq/Ministerio da Saud
Involvement of TSSA (trypomastigote small surface antigen) in Trypanosoma cruzi invasion of mammalian cells
TSSA (trypomastigote small surface antigen) is a polymorphic mucin-like molecule displayed on the surface of Trypanosoma cruzi trypomastigote forms. To evaluate its functional properties, we undertook comparative biochemical and genetic approaches on isoforms present in parasite stocks from extant evolutionary lineages (CL Brener and Sylvio X-10). We show that CL Brener TSSA, but not the Sylvio X-10 counterpart, exhibits dose-dependent and saturable binding towards non-macrophagic cell lines. This binding triggers Ca2+-based signalling responses in the target cell while providing an anchor for the invading parasite. Accordingly, exogenous addition of either TSSA-derived peptides or specific antibodies significantly inhibits invasion of CL Brener, but not Sylvio X-10, trypomastigotes. Non-infective epimastigote forms, which do not express detectable levels of TSSA, were stably transfected with TSSA cDNA from either parasite stock. Although both transfectants produced a surface-associated mucin-like TSSA product, epimastigotes expressing CL Brener TSSA showed a similar to 2-fold increase in their attachment to mammalian cells. Overall, these findings indicate that CL Brener TSSA functions as a parasite adhesin, engaging surface receptor(s) and inducing signalling pathways on the host cell as a prerequisite for parasite internalization. More importantly, the contrasting functional features of TSSA isoforms provide one appealing mechanism underlying the differential infectivity of T. cruzi stocks.Fundacao de Amparo a Pesquisa do Estado do Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Pesquisa (CNPq)Conselho Nacional de Pesquisa (CNPq)UNICEF/UNDP/World Bank/WHOUNICEF/UNDP/World Bank/WHOANPCyTANPCyTFundacion Florencio FioriniFundacion Florencio FioriniUNSAMUNSA
Targeting Plasmodium falciparum protein kinases with adenosine analogue-oligoarginine conjugates.
During the last decade, a vast number of inhibitors, ligands and fluorescent probes have evolved for mammalian protein kinases; however, the suitability of these compounds for studies of evolutionarily divergent eukaryotes has mostly been left beyond the scope of research. Here, we examined whether adenosine analogue-oligoarginine conjugates that had been extensively characterized as efficient inhibitors of the human protein kinases are applicable for targeting Plasmodium protein kinases. We demonstrated that ARCs were not only able to bind to and inhibit a representative member of Plasmodium falciparum kinome (cGMP-dependent protein kinase) in biochemical assay, but also affected the general phosphorylation levels in parasites released from the infected red blood cells upon saponin treatment. These findings urge advantaging of already existing biochemical tools, whose initially generic, but intrinsically "tunable" selectivity profiles could be used for dissection of signaling pathways outside the initially defined group of biological targets