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Extracellular ATP triggers proteolysis and
cytosolic Ca2+ rise in Plasmodium berghei and
Plasmodium yoelii malaria parasites
Laura Nogueira Cruz1, Maria Aparecida Juliano2, Alexandre Budu4, Luiz Juliano2, Anthony A Holder3,
Michael J Blackman3 and Célia RS Garcia1*

Abstract

Background: Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways
underlying its survival within the host.

Methods: Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and
Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca2+ signalling in Plasmodium berghei and
Plasmodium yoelii malaria parasites were investigated.

Results: The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 μM)
and PPADS (50 μM) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100,
200 and 500 μM), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 μM) to isolated
parasites previously loaded with Fluo4/AM in a Ca2+-containing medium led to an increase in cytosolic calcium.
This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 μM), TNP-ATP
(50 μM) or the purinergic blockers KN-62 (10 μM) and Ip5I (10 μM). Incubating P. berghei infected cells with KN-62
(200 μM) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western
blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 μM) led to an increase in rings forms (82% ± 4,
n = 11) and a decrease in trophozoite forms (18% ± 4, n = 11).

Conclusions: The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that
MSP1 is one target in this pathway.

Keywords: ATP, Purinergic receptor, Malaria, Plasmodium berghei, Plasmodium yoelii, Protease activity, Calcium mod-
ulation, Merozoite surface protein 1

Background
Malaria is one of the most important infectious diseases
in the world, responsible for an estimated 655,000 deaths
each year [1]. While Plasmodium grows and develops
inside red blood cells (RBCs), concomitant structural [2]
and biochemical changes occurs at the host cell culmi-
nating in cell rupture and release of free merozoites[3,4].
It is now well established that Plasmodium activates pro-
teases during the blood stages, including during the entry

into and exit from its host RBC and the intracellular
feeding on haemoglobin [5-9].
As an adaptive evolutionary mechanism, the malaria

parasite subverts its host’s signalling system to survive and
replicate[10-12]. The role of Ca2+ signalling underlying
modulation of the Plasmodium cell cycle has been exten-
sively investigated including an effect on protease activity
[13,14]. For example, some proteases are modulated by
intracellular Ca2+ in rodent Plasmodium species[15]. Such
signalling depends on the maintenance of low cytosolic
Ca2+ during its RBC stages[16-26]. However, it is still
unknown how a calcium signal is triggered and how parti-
cular metabolites derived from the host are central in pro-
viding signalling molecules to facilitate parasite growth.
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The host hormone, melatonin [27] and its derivatives that
elicit a rise in cytosolic calcium in Plasmodium [17,28-30]
also induce proteolysis in Plasmodium falciparum and
Plasmodium chabaudi [31].
Here we have investigated whether other metabolites

derived from the host are able to induce proteolysis in
Plasmodium berghei and Plasmodium yoelii. Purines such
as adenosine, ADP, ATP and UDP mediate several biologi-
cal processes[32], being essential in various metabolic
cycles and extracellular signalling [33]. The role of ATP in
cell signalling is well studied in many eukaryotic cells and
includes a wide variety of processes such as secretion,
immune responses, mechano-sensory transduction,
inflammation, platelet aggregation, cell proliferation, dif-
ferentiation, and cell migration[34].
ATP is released from RBCs when they are deformed,

and this process could also be relevant to malaria parasite
invasion since RBCs undergo extensive deformation after
the initial merozoite attachment. In addition, it has been
reported that following Plasmodium infection, the ATP
content of RBCs increases [35] and blocking purinergic
signalling decreases RBCs invasion by P. falciparum[36].
Interestingly, suramin, which inhibits purinergic signal-
ling, has been shown to inhibit merozoite surface pro-
tein-1 (MSP1) processing and erythrocyte invasion[37].
In this manner, a role of ATP in Ca2+ signalling and pro-
teolysis to modulate the Plasmodium RBC cell cycle is
hypothesized.
By using fluorescence resonance energy transfer (FRET)

peptides, it was previously shown that Ca2+ modulates
protease activation in P. berghei and P. yoelii parasites[15].
Here, the importance of ATP in modulating proteolysis
through Ca2+ pathways in these parasites has been investi-
gated. In addition, the role of ATP in activating proteases
or modulating the P. berghei cell cycle was studied in the
presence of purinergic blocker KN-62. It is shown here
that this compound blocks parasite maturation and affects
processing of the merozoite surface protein MSP1[38].
Taken together, the present work contributes to the
understanding of P. berghei biology.

Materials and methods
Reagents
Thapsigargin, (phenylmethylsulphonyl fluoride), saponin,
probenecid, MOPS (3-(N-morpholino) propanesulfonic
acid), EGTA (ethylene glycol-bis (2-aminoethylether)-N,N,
N’,N tetraacetic acid), adenosine, ATP (adenosine-5’-tri-
phosphate), GTP (guanosine-5’-triphosphate), suramin,
PPADS (pyridoxalphosphate-6-azophenyl-2’,4’-disulphonic
acid), IP5I (diinosine pentaphosphate), TNP-ATP (3’-O-
(2,4,6-Trinitrophenyl)adenosine-5’-triphosphate tetra
(triethylammonium) salt), KN-62 (4-[(2S)-2-[(5-isoquinoli-
nylsulfonyl) methylamino]-3-oxo-3-(4-phenyl-1-piperazi-
nyl)propyl] phenyl isoquinolinesulfonic acid ester), Triton

X-100 and dihydroethidium were purchased from Sigma-
Aldrich (St. Louis, MO). BAPTA/acetoxymethyl ester
(AM) and Fluo4/AM were bought from Molecular Probes
Inc. (Eugene, OR). The peptide Abz-AIKFFARQ-EDDnp
was analytical grade and synthesized according to Hirata,
1994[39-41].

Plasmodium berghei (strain NK65) and P. yoelii (strain 17X)
parasites
Plasmodium berghei and P. yoelii were maintained as an
asynchronous parasitaemia in mice (Balb/C strain) by
transfer every four days. For parasite preparation, filtration
of the infected blood through a cellulose column (What-
man CF11) removed leukocytes and platelets. The erythro-
cytes were then washed twice in PBS (137 mM NaCl, 2.7
mM KCl, 4.3 mM Na2HPO4, 1.4 mM NaH2PO4,) by cen-
trifugation at 1,500 g for 5 min and lysed in PBS contain-
ing 60 μg ml-1 saponin. The membranes were removed by
centrifugation (10,000 × g for 10 min at 4°C) and further
washing of the parasites (1,500 g for 5 min) in MOPS buf-
fer (116 mM NaCl, 5.4 mM KCl, 0.8 mM MgSO4, 5.5 mM
D-glucose, 50 mM MOPS, and 1 mM CaCl2, pH 7.2) con-
taining saponin. After erythrocyte lysis, the parasites were
maintained in MOPS buffer during the whole experiment.

Ethical approval
All animal procedures were approved by the São Paulo
University Ethics Committee for Animal Experiments
(CEEA) according to the Colégio Brasileiro de Experimen-
tação Animal guidelines (COBEA).

Cell culture of Plasmodium berghei (strain NK65) parasites
Plasmodium berghei parasites in mice (Balb/C) were trans-
ferred to culture at a parasitaemia of 6-10%. The infected
RBCs were filtered through a cellulose column (Whatman
CF11) as described above and washed twice with RPMI
1640 medium (GIBCO BRL) supplemented with 10% foe-
tal calf serum (FCS). Infected RBCs were then transferred
to a culture chamber and kept in suspension by a mag-
netic stirrer, under an atmosphere of 5% O2, 7% CO2 and
88% N2. The parasites were maintained in culture for 17 h.
The stages of intraerythrocytic development were deter-
mined by morphology on Giemsa-stained smears.

Peptide and calcium indicator Fluo4/AM loading
The FRET peptide Abz-AIKFFARQ-EDDnp has a fluor-
escent group, Abz (ortho-aminobenzoic acid), and a
quencher group, EDDnp (ethylene diamine-2-4-dinitro-
phenyl). The peptide is able to access free malaria para-
sites when the erythrocyte membrane was removed by
saponin treatment in MOPS buffer after 1 min incuba-
tion. Stock solutions were prepared in DMSO/water
(1:1) and concentrations were measured spectrophoto-
metrically using a molar absorption coefficient of 17,300
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M-1 cm-1 at 365 nm. For Ca2+ measurements isolated
parasites were incubated for 30 min at room tempera-
ture with the fluorescent calcium indicator Fluo-4/AM
(5 μM) in MOPS buffer containing 1.8 mM probenecid,
an inhibitor of organic transport, to minimize indicator
extrusion. The cell suspension was then washed three
times in MOPS buffer to remove the extracellular dye
[17].

Spectrofluorimetric determinations
Spectrofluorimeric measurements were performed in a
Shimadzu RF-5301 PC at 37°C with isolated parasites (108

cells ml-1) incubated with MOPS buffer in a 1 ml cuvette.
The fluorescence was measured continuously (acquisition
rate: every 0.5 seconds) 1 min after addition of the FRET
peptide (10 μM) for 400 seconds. Excitation/emission
wavelengths were adjusted to 320/420 nm for Abz and
505/530 nm for Fluo-4 AM. For experiments with puri-
nergic inhibitors parasites were pre-incubated with KN-62,
IP5I, TNP-ATP, PPADS or suramin, for 30 min at room
temperature. For experiments with the extra or intracellu-
lar calcium chelator EGTA (5 mM) or Bapta/AM (25, 100,
200 or 500 μM) parasites were pre-incubated for 5 or 40
min at room temperature, respectively. All incubations
were performed before the addition of the FRET peptide.

Confocal imaging of FRET peptide
Isolated P. berghei parasites were resuspended in MOPS
buffer and plated onto poly-lysine coated plates (200 μL).
After 1 min incubation with the FRET peptide (10 μM),
plated cells were taken to a confocal microscope (LSM
510, Zeiss) and observed under a 63× objective (water
immersion). Cells were excited with UV laser at 351 nm
and 364 nm. To select fluorescence, a 375 nm main
dichroic mirror was used. Fluorescence was collected with
a 385 long-pass dichroic mirror. Images were taken at
3 seconds intervals and ATP (200 μM) was added to the
cells after baseline acquisition. Fluorescence was analysed
using LSM 510 Image Examiner (Zeiss).

Flow cytometry analysis
Using Flow cytometry analysis viability was assessed in
P. yoelii and P. berghei by dihydroethidine (1:200) stain-
ing for 20 min at 37°C and analysed by dot plots (side
scatter versus fluorescence) of 105 cells. Dihydroethidine
(DHT) was excited with a 488 nm Argon laser and
fluorescence emission was collected at 518-605 nm.
Parameters subject to adjustment of the FACSCalibur
flow cytometer were forward scatter (FSC) (log scale, E-
1), SSC (log scale, 269), FL-2 (log scale, 505). For all
flow cytometry experiments initial gating was carried
out with unstained erythrocytes to account for erythro-
cyte autofluorescence.

Immunoblotting
Plasmodium berghei infected erythrocytes were incubated
in MOPS buffer with Ca2+ (1 mM) and KN-62 (200 μM) or
DMSO (0.05%) for 2 h at 37°C. After incubation cells were
kept for 2 h at -80°C and subsequently disrupted with lysis
buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% (v/v)
NP-40 and 0.5% (w/v) sodium deoxycholate) including the
phosphatase and protease inhibitors (10 μM NaF, 100 μM
orthovanadate, 1 μg ml-1 leupeptin, 1 μg ml-1 pepstatin A,
1 μg ml-1 quimostatin, 100 μg ml-1 benzamidine and 1 mM
PMSF) for 30 min at 4°C. Samples were quantified by spec-
trometry and 10 μg of protein was electrophoresed on an
8% polyacrylamide gel and transferred to nitrocellulose.
Mouse monoclonal antibody MAb25.1 [42,43] (1:1,000)
that specifically binds MSP1[44] was added and incubated
overnight at 4°C [45] After washing, blots were incubated
for 2 h with secondary HRP-conjugated anti-mouse IgG
antibody (1:10,000, GE Healthcare) and binding was
detected using enhanced chemiluminescence.

Statistical analysis
Results are expressed as mean ± SEM of at least three
individual experiments. Student’s t-test was used for com-
parisons between two groups, whereas for repeated mea-
sures ANOVA was used for comparisons among larger
groups. A P value less than 0.05 was considered indicative
of a statistically significant difference. GraphPad Prism
software (San Diego, CA, USA) was used for all statistical
tests.

Results
Previous studies had shown that extracellular ATP
induced a rise of intracellular Ca2+ concentration in
P. falciparum parasites[36]. Differences in the modula-
tion of proteolysis by Ca2+ among Plasmodium species
indicated the necessity for new comparative studies to
clarify the situation[15,31].
In the present work, a dose dependent modulation of

proteolysis of the FRET peptide substrate Abz-AIKF-
FARQ-EDDnp induced by ATP (50, 200 and 250 μM)
in the presence of extracellular calcium was verified as
shown in Figure 1 (panels A, B, C and D). Moreover,
when observed under the confocal microscope, the
fluorescence of the cleaved substrate Abz-AIKFFARQ-
EDDnp clearly colocalizes with P. berghei isolated para-
sites (Figure 1, Panel B). Under these conditions ATP
(200 μM) is able to induce proteolysis (Figure 1, Panels
C and D). Additional results also showed that adenosine
(10 μM) but not GTP (50 μM) induce proteolysis in iso-
lated P. yoelii and P. berghei parasites (Additional file 1).
In these experiments proteolysis was detected by the
rate of change in fluorescence caused by hydrolysis of
the FRET peptide.
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To verify whether intracellular and extracellular Ca2+

modulates the proteolytic activity induced by ATP (50
μM), experiments were performed in the presence of
BAPTA/AM (25 μM, 100 μM, 200 μM or 500 μM) or
EGTA (5 mM), respectively. Figure (2A and 2B) clearly
shows that proteolysis was inhibited in the presence of
intra- and extracellular Ca2+ chelator indicating the need
of the cation in the pathway. Interestingly, it was observed
that proteolysis is impaired in the presence of the puriner-
gic inhibitors PPADS (100 or 50 μM) and suramin
(50 μM) in P. berghei and P. yoelii parasites (Figure 3A
and 3B, respectively). The P2X (a family of ligand-gated
ion channel receptors) inhibitor KN-62 (at 10 μM) also

inhibited the proteolytic activity in P. berghei parasites
(Figure 3A).
Next, whether or not ATP can induce a calcium rise in

P. berghei and P. yoelii using the fluorescent calcium
probe Fluo4/AM was investigated. Figure (4A to 4D)
shows the typical rise in cytosolic calcium in isolated P.
berghei and P. yoelii after the addition of ATP (50 μM, 70
μM, 200 μM and 250 μM). Addition of the detergent digi-
tonin induced the maximum rise in calcium that was sub-
sequently abolished by addition of the calcium chelator
EGTA. Supplementary experiments showed that adeno-
sine (10 μM or 15 μM) is also able to increase cytosolic
calcium in P. berghei and P. yoelii (Additional file 2).

Figure 1 Extracellular ATP triggers intracellular protease activity in P. yoelii and P. berghei. (A) Graphical representation of resonance
energy transfer (FRET) peptide hydrolysis (peptide Abz-AIKFFARQ-EDDnp) in the presence of ATP (200 μM) and the control in isolated (saponin
treated) free mixed blood stages of P. berghei parasites. (B) Fluorescence trace and confocal imaging of Abz-AIKFFARQ-EDDnp hydrolysis. ATP
(200 μM) addition is indicated by the arrow. Fluorescence (fl) and phase contrast (ph) before and after ATP addition are below the trace. (C and
D) Bar graph analyses of peptide hydrolysis at different concentrations of ATP (25, 50, 200 and 250 μM) relative to the control (1.2 ± 0.03, n =
12, P = 0.0332; 1.5 ± 0.07, n = 9, P = 0.0007; 1.7 ± 0.075, n = 17, P < 0.0001 and 1.33 ± 0.04, n = 10; P = 0.0048) and (1.17 ± 0.07, n = 5, P =
0.425; 1.4 ± 0.06, n = 12, P = 0.0039; 1.7 ± 0.15, n = 16, P = 0.0267 and 1.7 ± 0.2, n = 8; P = 0.0228) for P. berghei and P.yoelii parasites,
respectively. P values were calculated by comparison with the control (ctr) (1.05 ± 0.08, n = 6) and (1.22 ± 0.03, n = 6), respectively. Isolated
parasites (108 cells ml-1) were incubated in MOPS buffer with 1 mM calcium in a 1 ml cuvette. The fluorescence was measured continuously
(acquisition rate: every 0.5 seconds)1 min after addition of the peptide Abz-AIKFFARQ-EDDnp (10 μM) for 400 seconds.
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Figure 2 Calcium is required for FRET activation triggered by ATP in P. berghei and P. yoelii isolated (saponin treated) free mixed
blood stages parasites. (A and B) The rate of peptide hydrolysis induced by ATP (50 μM) as measured by fluorescence was inhibited after
incubation with the extracellular and intracellular calcium chelators: EGTA (5 mM) for 5 min (1.0 ± 0.07, n = 6, P = 0.0004) and BAPTA/AM (100,
200 or 500 μM) for 40 min (1.2 ± 0.03, n = 11, P = 0.0002; 1.18 ± 0.01, n = 13, P < 0.0001; 1.2 ± 0.03, n = 5, P = 0.005, respectively) P values
were calculated by comparison with the ATP (50 μM) data (1.5 ± 0.07, n = 9) in P. berghei parasites. P. yoelii parasites were also incubated with
EGTA (5 mM) (1.02 ± 0.08, n = 7, P = 0.0009) and BAPTA/AM (25, 100, 200 or 500 μM) for 40 min (1.4 ± 0.07, n = 7, P = 0.823; 1.2 ± 0.03, n = 10,
P = 0.002; 1.2 ± 0.03, n = 10, P = 0.017; 1.2 ± 0.03, n = 10, P = 0.022, respectively). P values were calculated by comparison with the ATP (50 μM)
data (1.4 ± 0.06, n = 12). Isolated parasites (108 cells ml-1) were incubated in MOPS buffer without CaCl2. The fluorescence was measured
continuously (acquisition rate - every 0.5 seconds) for 400 seconds.

Figure 3 Inhibitors suggest the presence of purinergic receptor(s) in P. berghei (A) and P. yoelii (B). Rate of peptide hydrolysis induced by
ATP (50 μM) as measured by fluorescence after incubation with suramin (50 μM) (1.1 ± 0.04, n = 7, P = 0.0002 and 1.0 ± 0.07, n = 7, P = 0.0006,
respectively), PPADS (50 μM) (1.1 ± 0.08, n = 12, P = 0.0008 and 1.4 ± 0.063, n = 6, P = 0.791, respectively) or KN-62 (10 μM) (1.3 ± 0.025, n = 13,
P = 0.001). P values were calculated by comparison with the ATP (50 μM) data (1.5 ± 0.067, n = 9 and 1.4 ± 0.062, n = 12, respectively). Effects
of ATP on FRET peptide Abz-AIKFFARQ-EDDnp (10 μM) hydrolysis were observed after 30 min incubation of isolated parasites (108 cells ml-1)
with the pharmacological agents in MOPS buffer with 1 mM calcium in a 1 ml cuvette.. The fluorescence was measured continuously
(acquisition rate: every 0.5 seconds) for 400 seconds.
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These results indicate that activation of proteolysis by
ATP could be triggered by an increase in Ca2+ through
purinergic signalling in the rodent malarial parasites.
This is better demonstrated by the data in Figures 4C
and 4D, where isolated P. berghei and P. yoelii parasites
that have been loaded with Fluo4/AM were submitted to
different pharmacological treatments; the rise in cytosolic
calcium was impaired in the presence of P2X blockers
TNP-ATP (50 μM), KN-62 (10 μM), Ip5I (10 μM) and
PPADS (50 μM).
The rodent malaria parasites P. berghei and P yoelii

grow as relatively asynchronous populations, therefore,

the distribution of intracellular stages during the above
experiments (Figures 1, 2, 3, 4) was assessed by mor-
phology using Giemsa-stained smears; the results indi-
cated that the majority of parasites were at the
trophozoite stage (Figure 5).
Parasite viability was verified by flow cytometry analyses

using DHT staining. Figure (6A and 6B) shows that both
P. berghei and P. yoelii parasites were viable at the begin-
ning and end (3 h later) of the spectrofluorimetric assays
(99.8% ± 0.04 and 99.5% ± 0.15, n = 3, P = 0.144; 99.8% ±
0.1 and 99.7% ± 0.09, n = 3, P = 0.822, respectively) indi-
cating ideal experimental conditions for the parasites.

Figure 4 Dose response effects of ATP on [Ca2+]c are inhibited by purinergic blockers in malarial parasites. (A and B) Representative
traces of Fluo4/AM (green fluorescence calcium indicator) changes over time by addition of ATP (200 μM) in P. berghei and P. yoelii, respectively.
(C and D) Bar graph analyses of Ca2+ concentration in P. berghei and P. yoelii Fluo4/AM labelled isolated parasites (108 cells ml-1) after addition
of ATP (25, 50, 70, 200 and 250 μM) (1.15 a.u. ± 0.04, n = 8; 1.4 a.u. ± 0.06, n = 14; 1.5 a.u. ± 0.07, n = 11; 1.9 a.u. ± 0.1, n = 15; 1.6 a.u. ± 0.1, n =
11, respectively) in P. berghei or ATP (50, 70 and 200 μM) (2.3 a.u. ± 0.02, n = 3; 1.9 a.u. ± 0.1, n = 6; 2.1 a.u. ± 0.14, n = 12), respectively in P.
yoelii. Mobilization of Ca2+ after treatment with ATP (200 μM) was blocked in the presence of purinoreceptor inhibitors PPADS (50 μM) (0.9 a.u. ±
0.03, n = 9, P < 0.0001), TNP-ATP (50 μM) (1.0 a.u. ± 0.01, n = 7, P < 0.0001), Ip5I (10 μM) (1.1 a.u. ± 0.02, n = 12, P < 0.0001) or KN-62 (10 μM)
(1.0 a.u. ± 0.02, n = 9, P < 0.0001, respectively) in P. berghei and TNP-ATP (50 μM) (1.5 a.u. ± 0.09, n = 9, P = 0.001) in P. yoelii. P values were
calculated by comparison with the ATP (200 or 50 μM) data (2.0 a.u. ± 0.1, n = 12 and 2.3 a.u. ± 0.02, n = 3) in P. berghei and P. yoelii,
respectively. Bar graphs represent means with SEM. The fluorescence was measured continuously (acquisition rate: every 0.5 seconds) for 400
seconds.
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The ability of KN-62 to interfere with the processing of
MSP1 in P. berghei-infected cells was investigated next.
Western blot analyses showed that there is an increased
amount of MSP1 and its proteolytic fragments in parasites
treated with KN-62 (200 μM) for 2 h (Figure 7A and 7B).
MAb25.1 reacts with an epitope in the N-terminal region
of MSP1, therefore, band A is the full length precursor
(~230 kDa), band C is the N-terminal fragment corre-
sponding to the 83 kDa fragment of P. falciparum MSP1,
Bands D and E are subfragments of this N-terminal frag-
ment and B is an intermediate fragment containing all of
the ~95 kDa fragment C together with other downstream
sequences [42-44].
The effects of purinoreceptor inhibitor KN-62 on the

P. berghei cell cycle were verified by maintaining para-
sites with a similar distribution of development stages
(Figure 8A) for 17 h in the presence of KN-62 (10 μM).
The data showed a considerable drop in the number of
trophozoites (18.01% ± 4.08, n = 11) compared with the

number of ring stages (81.99% ± 4.07, n = 11) thus
highlighting the relevance of purinoceptors in the para-
site developmental cycle (Figure 8C).

Discussion
ATP is a ubiquitous signalling molecule that recognizes
purinergic membrane receptors and modulates several
processes studied in a myriad of organisms including
slime mould, yeast lizards and mammals (for reviews see
[28,46-51]). Purinergic receptors are divided into two
classes namely P1 and P2 (adenosine and ATP/ADP,
respectively). The P2 receptor includes two types: P2X
(family of ligand-gated ion channel receptors) and P2Y (a
family of GPCR) [52]. Despite the presence of purinergic
signalling mechanisms in invertebrates and lower eukar-
yotes the evolutionary distance from parasites to human
prevents as molecular identification of the receptor from
the genome [53-55]. It is noteworthy that in the parasitic
helminth Schistosoma mansoni, a P2X receptor has been

Figure 5 Distribution of Plasmodium stages and parasitemia during experiments. P. berghei (A) and P. yoelii (B) proportion of rings (25.2 ±
3, n = 6 and 27.3 ± 2, n = 6, respectively), trophozoites (60 ± 1.8, n = 6 and 68.8 ± 3, n = 6, respectively) and schizonts (14.7 ± 2.7, n = 6 and
39 ± 0.8, n = 6, respectively). To assess parasitaemia (C) (38.4 ± 1.5, n = 6 and 40.1 ± 4.3, n = 6; P = 0.718, respectively) in Balb/C mice no less
than 1000 erythrocytes were counted on Giemsa-stained smears. Bar graphs represent means with SEM.

Figure 6 Flow Cytometry using dihydroethidine staining in P. berghei and P. yoelii to assess viability. (A and B) Histogram distribution of
fluorescence in non labelled parasites (control), parasites labeled at the beginning (dashed line) and 3 hours later (solid line) in the same buffer.
Dihydroethidine is a vital stain taken up by viable parasites, and which then stains nucleic acid. It is the chemically reduced form of DNA
intercalating dye ethidium bromide (B-ring reduction). (C and D) Bar graph analyses of viability in P. berghei and P. yoelii. The data (mean
of three independent experiments) show no statistical difference in DHT fluorescence from the beginning and the end of the experiment (99.8
± 0.09, n = 3 and 99.8 ± 0.1, n = 3; P = 0.823, respectively) and (99.5 ± 0.2, n = 3 and 99.8 ± 0.04, n = 3; P = 0.145, respectively).
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identified in the genome database[56], and using bioinfor-
matic tools Madeira and colleagues identified genes for
GPCR-like candidates in the genomes of P. falciparum, P.
berghei, P. yoelii and P. chabaudi [57]. As RBCs do not
synthesize their own purines de novo, Plasmodium must
obtain purine compounds from the extracellular milieu
[58]. Endocytosis from the host cell cytosol is thought to
be involved in the uptake of nutrients, such as nucleosides,
nucleobases and amino acids.
The P. falciparum plasma membrane nucleoside trans-

porter, PfENT1 (P. falciparum equilibrative nucleoside
transporter), has been the subject of extensive study
[59,60]. Localized in the plasma membrane [61] its
kinetic parameters and substrate specificity have been
determined [59,60,62]. The knockout of the PfENT1
gene leads to a reduction in hypoxanthine uptake, and
in addition adenosine and inosine transport is affected
[63]. The molecular-cellular mechanism by which the
parasite obtains extracellular compounds might be
related to lipid traffic in the infected RBC [64] and it is
well known that the parasite has the ability to create
membranous structures in the infected-RBC and new
functions such as the anion channel (new permeation
pathway)[65-67].
In the present contribution, it was shown that addition

of ATP in a dose dependent manner (Figure 1) to

P. berghei and P. yoelii activates intracellular proteolysis.
Interestingly, extracellular and intracellular Ca2+ is
needed to activate the proteolysis triggered by ATP
(Figure 2). It was also found that the purinergic receptor
is involved in the ATP signalling pathway to activate the
proteases of these rodent malarial parasites since the
presence of purinergic antagonists (suramin, PPADS or
KN-62) blocked proteolytic activation triggered by ATP
in P. berghei and P. yoelii (Figure 3). Differences in the
PPADS concentration needed to block protease activity in
P. berghei (50 μM) and P. yoelii (100 μM) may be due to
differences in the total intracellular Ca2+ concentration
mobilized by ATP in both species (Figure 4). This result is
in agreement with the presence of a purinergic antagonist
(PPADS, TNP-ATP, Ip5I or KN-62) able to inhibit the
ability of ATP to induce a rise in calcium in these rodent
malarial species (Figure 4). Of interest, the differences in
calcium activation of proteolysis between P. berghei and
P. yoelii were reported previously[15].
For the human malaria parasite P. falciparum, mero-

zoite invasion and secondary processing of MSP1 is
inhibited by suramin[37]. Here it was shown that MSP1
protein expression and processing in P. berghei parasites
is increased by KN-62 (200 μM) treatment (Figure 7)
indicating that MSP1 processing may be a downstream
effect of the purinergic signalling pathway of P. berghei.

Figure 7 MSP1 protein expression is increased in KN-62 treated P. berghei iRBC. (A) Representative western blot comparing MSP1 protein
and its fragments in control and KN-62 (200 μM) treated P. berghei iRBC showing increased expression levels after treatment. Each lane is loaded
with 10 μg total cell lysate prepared from freshly harvested parasites. Blots were probed with monoclonal antibody mAb25.1 (1:1000); Anti-actin
antibody (1:5000) was used as a control for protein loading. (B) Densitometric analysis of blot showed that MSP expression is increased,
particularly in bands C and E.
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Proteolysis is central to several steps of the Plasmo-
dium life cycle including merozoite invasion and egress
from RBC, and haemoglobin digestion. In P. falciparum,
blocking purinergic receptors with either KN-62 or Ip51
prevents parasite invasion of RBCs[36]; interestingly the
present work showed that KN-62 modulates the P. ber-
ghei intracellular cell cycle (Figure 8).

Conclusion
The data presented here support the concept that Plas-
modium subverts the host-endocrine system by using
extracellular ATP to activate proteolysis to invade or
escape from RBCs. The molecular identification of the
purinergic receptor in Plasmodium as well as the pro-
tease (s) involved in these processes represent the basis
of new strategies for development of anti-malarial drugs.

Additional material

Additional file 1: Extracellular adenosine but not GTP triggers
intracellular protease activity in P. berghei and P. yoelii (A and B).
Bar graph analyses of peptide hydrolysis after GTP (50 μM) (0.99 ± 0.09, n
= 5, P = 0.63 and 1.06 ± 0.05, n = 9, P = 0.365) or adenosine (10 μM)
(1.51 ± 0.11, n = 7, P = 0.006 and 2.15 ± 0.11, n = 3, P < 0.0001) in P.
berghei and P. yoelii, respectively. P values were calculated by comparison
with control data (1.05 ± 0.08, n = 6 and 1.12 ± 0.03, n = 6, respectively).
Isolated parasites (108 cells ml-1) were incubated in MOPS buffer with 1
mM calcium in a 1 ml cuvette. The fluorescence was measured
continuously 1 min after addition of the peptide Abz-AIKFFARQ-EDDnp
(10 μM).

Additional file 2: Dose response effects of adenosine on [Ca2+]c rise
in P. yoelii and P. berghei. (A and B). Analyses of Ca2+ concentration in
P. berghei and P.yoelii Fluo4/AM labelled isolated parasites (108 cells ml-1)
after addition of adenosine (10 and 15 μM) (1.59 a.u. ± 0.07, n = 18, P =
0.007 and 1.5 a.u. ± 0.062, n = 8, P = 0.002, respectively) in P. berghei or
adenosine (10 μM) (1.78 a.u. ± 0.16, n = 8, P = 0.004) in P. yoelii. P values
were calculated by comparison with control data (1.05 a.u. ± 0.01, n = 3

Figure 8 Effects of purinergic inhibitor KN-62 on P. berghei erythrocyte invasion (A). Plasmodium berghei intraerythrocytic stages (ring,
trophozoite or schizont) were assessed during an in vitro assay at time zero (beginning) (22.53 ± 2.93, n = 4; 73.21 ± 3.3, n = 4 and 3.26 ± 0.69,
n = 4, respectively). (B) Culture of asynchronous P. berghei parasites were incubated for 17 h in the presence of DMEM (control), ATP (50 μM),
ATP (50 μM) with DMSO (0.05%) or ATP (50 μM) with KN-62 (10 μM) and the parasitaemia calculated as a percentage of control (100, n = 4; 93.8
± 9.3, n = 4; 84 ± 6.1, n = 7 and 80.2 ± 10.4, n = 9, respectively). Note no difference in erythrocyte invasion among the treatments (P > 0.05).
Distribution of P. berghei intraerythrocytic stages in the presence of KN-62 (C). P. berghei intraerytrocytic stages: ring (41.9 ± 3.7, n = 9; 43.8 ± 3.6,
n = 8; 45.2 ± 2.3, n = 9; 82 ± 4, n = 11; respectively), trophozoite (55.5 ± 3.8, n = 9; 53.7 ± 3.8, n = 8; 52.2 ± 2.5, n = 9; 18 ± 4, n = 11,
respectively) or schizont (2.6 ± 0.4, n = 9; 2.5 ± 1, n = 8; 2.6 ± 1.1, n = 9; 0.00 ± 0.00, n = 11; respectively) were assessed after 17 h in the in vitro
assay. Bars represents the number of rings, trophozoites and schizonts (average), expressed as a percentage of control ± S.E.M. Data were
compared by one-way ANOVA and by the Newman-Keuls test. *Statistical significance with respect to control values P < 0.001.
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and 0.99 a.u. ± 0.064, n = 5; respectively). Bar graphs represent means
with SEM.
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