23 research outputs found

    Rat olfactory mucosa mesenchymal stem/stromal cells (om-mscs): a characterization study

    Get PDF
    Stem/stromal cell-based therapies are a branch of regenerative medicine and stand as an attractive option to promote the repair of damaged or dysfunctional tissues and organs. Olfactory mucosa mesenchymal stem/stromal cells have been regarded as a promising tool in regenerative therapies because of their several favorable properties such as multipotency, high proliferation rate, helpful location, and few associated ethical issues. These cells are easily accessible in the nasal cavity of most mammals, including the rat, can be easily applied in autologous treatments, and do not cope with most of the obstacles associated with the use of other stem cells. Despite this, its application in preclinical trials and in both human and animal patients is still limited because of the small number of studies performed so far and to the nonexistence of a standard and unambiguous protocol for collection, isolation, and therapeutic application. In the present work a validation of a protocol for isolation, culture, expansion, freezing, and thawing of olfactory mucosa mesenchymal stem/stromal cells was performed, applied to the rat model, as well as a biological characterization of these cells. To investigate the therapeutic potential of OM-MSCs and their eventual safe application in preclinical trials, the main characteristics of OMSC stemness were addressed.info:eu-repo/semantics/publishedVersio

    Gamma Irradiation Processing on 3D PCL Devices—A Preliminary Biocompatibility Assessment

    Get PDF
    Funding Information: Mariana Vieira Branquinho (SFRH/BD/146172/2019), Ana Catarina Sousa (SFRH/BD/146689/2019), and Bruna Lopes (2021.05265.BD) acknowledge the Fundação para a Ciência e Tecnologia (FCT)’s financial support. Rui Damásio Alvites acknowledges the Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), Porto University (UP), and FCT for the funding and availability of all technical, structural, and human resources necessary for the development of this work. The work was supported through the project UIDB/00211/2020 funded by FCT/MCTES, national funds. This research was funded by Projects PEst-OE/AGR/UI0211/2011 from FCT, and COMPETE 2020, from ANI–Projetos ID&T Empresas em Copromoção, by the project “Print-on-Organs–Engineering bioinks and processes for direct printing on organs” with the reference POCI-01-0247-FEDER-033877, by the project “Bone2Move-Development of “in vivo” experimental tech-niquesand modelling methodologies for the evaluation of 4D scaffolds for bone defect in sheepmodel: an integrative research approach” with the reference POCI-01-0145-FEDER-031146. Publisher Copyright: © 2022 by the authors.Additive manufacturing or 3D printing applying polycaprolactone (PCL)-based medical devices represents an important branch of tissue engineering, where the sterilization method is a key process for further safe application in vitro and in vivo. In this study, the authors intend to access the most suitable gamma radiation conditions to sterilize PCL-based scaffolds in a preliminary biocompatibility assessment, envisioning future studies for airway obstruction conditions. Three radiation levels were considered, 25 kGy, 35 kGy and 45 kGy, and evaluated as regards their cyto- and biocompatibility. All three groups presented biocompatible properties, indicating an adequate sterility condition. As for the cytocompatibility analysis, devices sterilized with 35 kGy and 45 kGy showed better results, with the 45 kGy showing overall improved outcomes. This study allowed the selection of the most suitable sterilization condition for PCL-based scaffolds, aiming at immediate future assays, by applying 3D-customized printing techniques to specific airway obstruction lesions of the trachea.publishersversionpublishe

    Intensive neurorehabilitation and allogeneic stem cells transplantation in canine degenerative myelopathy

    Get PDF
    IntroductionDegenerative myelopathy (DM) is a neurodegenerative spinal cord disease with upper motor neurons, with progressive and chronic clinical signs, similar to amyotrophic lateral sclerosis (ALS). DM has a complex etiology mainly associated with SOD1 gene mutation and its toxic role, with no specific treatment. Daily intensive rehabilitation showed survival time near 8 months but most animals are euthanized 6–12 months after clinical signs onset.MethodsThis prospective controlled blinded cohort clinical study aims to evaluate the neural regeneration response ability of DM dogs subjected to an intensive neurorehabilitation protocol with mesenchymal stem cells (MSCs) transplantation. In total, 13 non-ambulatory (OFS 6 or 8) dogs with homozygous genotype DM/DM and diagnosed by exclusion were included. All were allocated to the intensive neurorehabilitation with MSCs protocol (INSCP) group (n = 8) or to the ambulatory rehabilitation protocol (ARP) group (n = 5), which differ in regard to training intensity, modalities frequency, and MSCs transplantation. The INSCP group was hospitalized for 1 month (T0 to T1), followed by MSCs transplantation (T1) and a second month (T2), whereas the ARP group was under ambulatory treatment for the same 2 months.ResultsSurvival mean time of total population was 375 days, with 438 days for the INSCP group and 274 for the ARP group, with a marked difference on the Kaplan–Meier survival analysis. When comparing the literature's results, there was also a clear difference in the one-sample t-test (p = 0.013) with an increase in time of approximately 70%. OFS classifications between groups at each time point were significantly different (p = 0.008) by the one-way ANOVA and the independent sample t-test.DiscussionThis INSCP showed to be safe, feasible, and a possibility for a long progression of DM dogs with quality of life and functional improvement. This study should be continued

    HFE variants and the expression of iron-related proteins in breast cancer-associated lymphocytes and macrophages

    Get PDF
    Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264664/The association of HFE (High Iron FE) major variants with breast cancer risk and behavior has been a matter of discussion for a long time. However, their impact on the expression of iron-related proteins in the breast cancer tissue has never been addressed. In the present study, hepcidin, ferroportin 1, transferrin receptor 1 (TfR1), and ferritin expressions, as well as tissue iron deposition were evaluated in a collection of samples from breast cancers patients and analyzed according to the patients’ HFE genotype. Within the group of patients with invasive carcinoma, those carrying the p.Cys282Tyr variant in heterozygosity presented a higher expression of hepcidin in lymphocytes and macrophages than wild-type or p.His63Asp carriers. An increased expression of TfR1 was also observed in all the cell types analyzed but only in p.Cys282Tyr/p.His63Asp compound heterozygous patients. A differential impact of the two HFE variants was further noticed with the observation of a significantly higher percentage of p.Cys282Tyr heterozygous patients presenting tissue iron deposition in comparison to p.His63Asp heterozygous. In the present cohort, no significant associations were found between HFE variants and classical clinicopathological markers of breast cancer behavior and prognosis. Although limited by a low sampling size, our results provide a new possible explanation for the previously reported impact of HFE major variants on breast cancer progression, i.e., not by influencing systemic iron homeostasis but rather by differentially modulating the local cellular expression of iron-related proteins and tissue iron deposition.OM is a recipient of the PhD grant SFRH/BD/2011/78184 from Fundação para a Ciência e Tecnologia (FCT). The authors also acknowledge financial support from ICBAS/AI&NSUMIB and by national funds through FCT and Ministério da Educação e Ciência (MEC) and when applicable co-funded by FEDER funds within the partnership agreement PT2020 related with the research unit number 4293.info:eu-repo/semantics/publishedVersio

    Local iron homeostasis in the breast ductal carcinoma microenvironment

    Get PDF
    Abstract BACKGROUND: While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. METHODS: Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. RESULTS: We confirm previous results by showing that breast cancer epithelial cells present an 'iron-utilization phenotype' with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an 'iron-donor' phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. CONCLUSIONS: The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.info:eu-repo/semantics/publishedVersio

    Drug Combinations: A New Strategy to Extend Drug Repurposing and Epithelial-Mesenchymal Transition in Breast and Colon Cancer Cells

    No full text
    Despite the progressive research and recent advances in drug therapy to treat solid tumours, the number of cases and deaths in patients with cancer is still a major health problem. Drug repurposing coupled to drug combination strategies has been gaining interest among the scientific community. Recently, our group proposed novel drug combinations for breast and colon cancer using repurposed drugs from different classes (antimalarial and central nervous system (CNS)) and chemotherapeutic agents such as 5-fluorouracil (5-FU), paclitaxel (PTX), and found promising results. Here, we proposed a novel drug combination using different CNS drugs and doxorubicin (DOX), an antineoplastic used in breast cancer therapy, and studied their anticancer potential in MCF-7 breast cancer cells. Cells were treated with each drug alone and combined with increasing concentrations of DOX and cell viability was evaluated by MTT and SRB assays. Studies were also complemented with morphological evaluation. Assessment of drug interaction was performed using the CompuSyn and SynergyFinder software. We also compiled our previously studied drug pairs and selected the most promising ones for evaluation of the expression of EMT biomarkers (E-cadherin, P-cadherin, vimentin, and β-catenin) by immunohistochemistry (IHC) to assess if these drug combinations affect the expression of these proteins and eventually revert EMT. These results demonstrate that combination of DOX plus fluoxetine, benztropine, and thioridazine at their IC50 can improve the anticancer effect of DOX but to a lesser degree than when combined with PTX (previous results), resulting in most of the drug interactions being antagonist or additive. This suggests that the choice of the antineoplastic drug influences the success of the drug combination. Collectively, these results also allow us to conclude that antimalarial drugs as repurposed drugs have enhanced effects in MCF-7 breast cancer cells, while combination with CNS drugs seems to be more effective in HT-29 colon cancer cells. The IHC results demonstrate that combination treatments increase E-cadherin expression while reducing P-cadherin, vimentin, and β-catenin, suggesting that these treatments could induce EMT reversal. Taken together, these results could provide promising approaches to the design of novel drug combinations to treat breast and colon cancer patients

    Immunohistochemical Expression of Platelet-Derived Growth Factor Receptor β (PDGFR-β) in Canine Cutaneous Peripheral Nerve Sheath Tumors: A Preliminary Study

    No full text
    As in humans, the prevalence of tumors in companion animals is increasing dramatically and there is a strong need for research on new pharmacological agents particularly for the treatment of those tumors that are resistant to conventional chemotherapy agents such as soft tissue sarcomas (STS). Because malignant (MPNST) and benign peripheral nerve sheath tumors (BPNST) are relatively common STS in dogs, the aim of this retrospective study was to evaluate the immunohistochemical (IHC) expression of PDGFR-β, contributing to its characterization as a potential target for their treatment. A total of 19 samples were included, 9 histologically classified as benign and the other 10 as malignant. The results showed diffuse immunoexpression in the cytoplasm of neoplastic cells. Six (66.7%) BPNST expressed the receptor in less than 25% of neoplastic cells and only three (33.3%) exhibited labelling in more than 25% of neoplastic cells. In contrast, all MPNST expressed PDGFR-β, and in 8 (80%) of these samples, the receptor was expressed in more than 25% of neoplastic cells, and only 2 (20%) cases expressed the receptor in less than 25% of neoplastic cells. PDGFR-β expression was significantly higher in MPNST and larger tumors, suggesting that drugs able to inhibit the activity of this tyrosine kinase receptor, such as toceranib, may be considered in the approach of unresectable tumors and/or in the context of adjuvant or neoadjuvant therapies
    corecore