1,277 research outputs found

    Systems and method for viral detection

    Get PDF
    Systems and methods are provided for detecting viral particles, viral proteins, viral RNA, or viral DNA in multiple fluids. The methods consist of applying a magnetic torque to functionalized magnetic beads in a fluid solution resting on a functionalized substrate. The solution is comprised of one of the following: intact viral particles, viral proteins, RNA, or DNA. The presence and/or quantity of the aforementioned molecules or viruses is detected by measuring the translational velocity of the beads. The methods here described can detect multiple different species simultaneously using a multiplexed assay. Also, the systems here included are able to process multiple samples simultaneously

    Aggregation dynamics of active rotating particles in dense passive media

    Full text link
    Active matter systems are able to exhibit emergent non-equilibrium behavior due to activity-induced effective interactions between the active particles. Here we study the aggregation and dynamical behavior of active rotating particles, spinners, embedded in 2D passive colloidal monolayers. Using both experiments and simulations we observe aggregation of active particles or spinners whose behavior resembles classical 2D Cahn–Hilliard coarsening. The aggregation behavior and spinner attraction depend on the mechanical properties of the passive monolayer and the activity of spinners. Spinner aggregation only occurs when the passive monolayer behaves elastically and when the spinner activity exceeds a minimum activity threshold. Interestingly, for the spinner concentrations investigated here, the spinner concentration does not seem to change the dynamics of the aggregation behavior. There is a characteristic cluster size which maximizes spinner aggregation by minimizing the drag through the passive monolayer and maximizing the stress applied on the passive medium. We also show a ternary mixture of passive particles and co-rotating and counter-rotating spinners that aggregate into clusters of co and counter-rotating spinners respectivelyThis work was supported by Department of Energy BES award #ER46919 (theoretical and simulation work) and the Chang Family (experimental work)

    Systems and methods for detecting molecular interactions using magnetic beads

    Get PDF
    Systems and methods are provided for detecting or measuring binding affinity between different compositions. The methods include contacting one or more magnetic beads having a surface including a first composition with a substrate having a surface including a second composition; applying a rotating magnetic field to the one or more magnetic beads effective to cause the one or more magnetic beads to move across the surface of the substrate; measuring the movement of the one or more magnetic beads across the substrate surface to determine a translational velocity; and determining a binding affinity between the first and second compositions from the translational velocity

    Elasticity-induced force reversal between active spinning particles in dense passive media

    Get PDF
    The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium.United States. Dept. of Energy. Office of Basic Energy Sciences, Division of Materials Science and Engineering (Award No. #ER46919

    Artificial Tribotactic Microscopic Walkers: Walking Based on Friction Gradients

    Get PDF
    Friction, the resistive force between two surfaces sliding past each other, is at the core of a wide diversity of locomotion schemes. While such schemes are well described for homogeneous environments, locomotion based on friction in inhomogeneous environments has not received much attention. Here we introduce and demonstrate the concept of tribotaxis, a motion that is guided by gradients in the friction coefficient. Our system is composed of microwalkers that undergo an effective frictional interaction with biological receptors on the substrate, which is regulated by the density of such receptors. When actuated stochastically, microwalkers migrate to regions of higher friction, much like a chemotactic cell migrates to regions of higher chemoattractant concentration. Simulations and theory based on biased random walks are in excellent agreement with experiments. We foresee important implications for tribotaxis in artificial and natural locomotion in biological environments.MIT Energy Initiative (BP Fellowship)United States. Dept. of Energy. Office of Basic Energy Sciences (Award ER46919

    Thermodynamic relations in a driven lattice gas: numerical exprements

    Full text link
    We explore thermodynamic relations in non-equilibrium steady states with numerical experiments on a driven lattice gas. After operationally defining the pressure and chemical potential in the driven lattice gas, we confirm numerically the validity of the integrability condition (the Maxwell relation) for the two quantities whose values differ from those for an equilibrium system. This implies that a free energy function can be constructed for the non-equilibrium steady state that we consider. We also investigate a fluctuation relation associated with this free energy function. Our result suggests that the compressibility can be expressed in terms of density fluctuations even in non-equilibrium steady states.Comment: 4 pages, 4 figure

    The lives of FR I radio galaxies

    Full text link
    After a brief introduction to the morphological properties of FRI radio sources, we discuss the possibility that FRI jets are relativistic at their bases and decelerate quickly to non-relativistic velocities. From two-frequency data we determine spectral index distributions and consequently the ages of FRI sources. We show that in the large majority of cases synchrotron theory provides unambiguous and plausible answers; in a few objects re-acceleration of electrons may be needed. The derived ages are of the order 10^7-10^8 years, 2-4 times larger than the ages inferred from dynamical arguments and a factor 5-10 larger than the ages of FRII sources. The linear sizes of FRI and FRII sources make it unlikely that many FRII's evolve into FRI's. A brief discussion is given of the possibility that radio sources go through different cycles of activity.Comment: 19 pages, including 13 figures, to appear in `Life Cycles of Radio Galaxies', ed. J. Biretta et al., New Astronomy Review

    Cauchy's infinitesimals, his sum theorem, and foundational paradigms

    Full text link
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy's proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy's proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy's proof closely and show that it finds closer proxies in a different modern framework. Keywords: Cauchy's infinitesimal; sum theorem; quantifier alternation; uniform convergence; foundational paradigms.Comment: 42 pages; to appear in Foundations of Scienc
    corecore