103 research outputs found

    Metal-free transannulation reaction of indoles with nitrostyrenes: a simple practical synthesis of 3-substituted 2-quinolones

    Get PDF
    3-Substituted 2-quinolones are obtained via a novel, metal-free transannulation reaction of 2-substituted indoles with 2-nitroalkenes in polyphosphoric acid. The reaction can be used in conjunction with the Fisher indole synthesis offering a practical three-component heteroannulation methodology to produce 2-quinolones from arylhydrazines, 2-nitroalkenes and acetophenone

    Synthesis of imidazo[1,5-a]pyridines via cyclocondensation of 2-(aminomethyl)pyridines with electrophilically activated nitroalkanes

    Get PDF
    Imidazo[1,5-a]pyridines were efficiently prepared via the cyclization of 2-picolylamines with nitroalkanes electrophilically activated in the presence of phosphorous acid in polyphosphoric acid (PPA) medium

    Electrophilically Activated Nitroalkanes in Synthesis of 3,4-Dihydroquinozalines

    Get PDF
    Nitroalkanes activated with polyphosphoric acid serve as efficient electrophiles in reactions with various nucleophilic amines. Strategically placed second functionality allows for the design of annulation reactions enabling preparation of various heterocycles. This strategy was employed to develop an innovative synthetic approach towards 3,4-dihydroquinazolines from readily available 2-(aminomethyl)anilines

    A Convenient Way to Quinoxaline Derivatives through the Reaction of 2-(3-Oxoindolin-2-yl)-2-phenylacetonitriles with Benzene-1,2-diamines

    Get PDF
    Microwave-assisted reaction between 2-(3-oxoindolin-2-yl)-2-phenylacetonitriles andbenzene-1,2-diamines leads to the high-yielding formation of the corresponding quinoxalines as sole, easily isolaable products. The featured transformation involves unusual extrusion of phenylacetonitrile molecule and could be performed in a short sequence starting from commonly available indoles and nitroolefins

    Activity of 2-Aryl-2-(3-indolyl)acetohydroxamates Against Drug-Resistant Cancer Cells

    Get PDF
    Many types of tumor, including glioma, melanoma, non-small cell lung, esophageal, head and neck cancer, among others, are intrinsically resistant to apoptosis induction and poorly responsive to current therapies with proapoptotic agents. In addition, tumors often develop multi-drug resistance based on the cellular efflux of chemotherapeutic agents. Thus, novel anticancer agents capable of overcoming these intrinsic or developed tumor resistance mechanisms are urgently needed. We describe a series of 2-aryl-2-(3-indolyl)acetohydroxamic acids, which are active against apoptosis- and multidrug-resistant cancer cells as well as glioblastoma neurosphere stem-like cell cultures derived from patients. Thus, the described compounds serve as a novel chemical scaffold for the development of potentially highly effective clinical cancer drugs

    Annulation of Perimidines with 5-Alkynylpyrimidines en Route to 7-Formyl-1,3-Diazopyrenes

    Get PDF
    Unusual rearrangements were shown to accompany Brønsted acid-assisted peri-annulations of 1H-perimidines with 5-alkynylpyrimidines. These transformations take different routes depending on the nature of acetylene precursor, and lead to the formation of 7-formyl-1,3-diazopyrenes

    Ferromagnetic HfO2/Si/GaAs interface for spin-polarimetry applications

    Get PDF
    In this letter, we present electrical and magnetic characteristics of HfO2-based metal-oxide-semiconductor capacitors (MOSCAPs), along with the effect of pseudomorphic Si as a passivating interlayer on GaAs(001) grown by molecular beam epitaxy. Ultrathin HfO2 high-k gate dielectric films (3–15 nm) have been grown on Si/GaAs(001) structures through evaporation of a Hf/HfO2 target in NO2 gas. The lowest interface states density Dit at Au/HfO2/Si/GaAs(001) MOS-structures were obtained in the range of (6−13)×101

    Computational Inference of Neural Information Flow Networks

    Get PDF
    Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks

    American Gut: An Open Platform For Citizen Science Microbiome Research

    Get PDF
    Copyright © 2018 McDonald et al. Although much work has linked the human microbiome to specific phenotypes and lifestyle variables, data from different projects have been challenging to integrate and the extent of microbial and molecular diversity in human stool remains unknown. Using standardized protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-scientists, together with an open research network, we compare human microbiome specimens primarily from the United States, United Kingdom, and Australia to one another and to environmental samples. Our results show an unexpected range of beta-diversity in human stool microbiomes compared to environmental samples; demonstrate the utility of procedures for removing the effects of overgrowth during room-temperature shipping for revealing phenotype correlations; uncover new molecules and kinds of molecular communities in the human stool metabolome; and examine emergent associations among the microbiome, metabolome, and the diversity of plants that are consumed (rather than relying on reductive categorical variables such as veganism, which have little or no explanatory power). We also demonstrate the utility of the living data resource and cross-cohort comparison to confirm existing associations between the microbiome and psychiatric illness and to reveal the extent of microbiome change within one individual during surgery, providing a paradigm for open microbiome research and education. IMPORTANCE We show that a citizen science, self-selected cohort shipping samples through the mail at room temperature recaptures many known microbiome results from clinically collected cohorts and reveals new ones. Of particular interest is integrating n = 1 study data with the population data, showing that the extent of microbiome change after events such as surgery can exceed differences between distinct environmental biomes, and the effect of diverse plants in the diet, which we confirm with untargeted metabolomics on hundreds of samples
    corecore