14 research outputs found

    Quantum Bose liquids with logarithmic nonlinearity: Self-sustainability and emergence of spatial extent

    Full text link
    The Gross-Pitaevskii (GP) equation is a long-wavelength approach widely used to describe the dilute Bose-Einstein condensates (BEC). However, in many physical situations, such as higher densities, this approximation unlikely suffices hence one might need models which would account for long-range correlations and multi-body interactions. We show that the Bose liquid described by the logarithmic wave equation has a number of drastic differences from the GP one. It possesses the self-sustainability property: while the free GP condensate tends to spill all over the available volume the logarithmic one tends to form a Gaussian-type droplet - even in the absence of an external trapping potential. The quasi-particle modes of the logarithmic BEC are shown to acquire a finite size despite the bare particles being assumed point-like, i.e., the spatial extent emerges here as a result of quantum many-body correlations. Finally, we study the elementary excitations and demonstrate that the background density changes the topological structure of their momentum space which, in turn, affects their dispersion relations. Depending on the density the latter can be of the massive relativistic, massless relativistic, tachyonic and quaternionic type.Comment: 14 pages, 5 figures. Updates: v2: minor corrections (published version

    Dynamics of OH(2Pi)-He collisions in combined electric and magnetic fields

    Get PDF
    We use accurate quantum mechanical calculations to analyze the effects of parallel electric and magnetic fields on collision dynamics of OH(2Pi) molecules. It is demonstrated that spin relaxation in 3He-OH collisions at temperatures below 0.01 K can be effectively suppressed by moderate electric fields of order 10 kV/cm. We show that electric fields can be used to manipulate Feshbach resonances in collisions of cold molecules. Our results can be verified in experiments with OH molecules in Stark decelerated molecular beams and electromagnetic traps.Comment: 20 pages, 5 figures, submitted to Faraday Discuss. 142: Cold and Ultracold Molecule

    Suppression of inelastic collisions of polar 1ÎŁ^1 \Sigma state molecules in an electrostatic field

    Full text link
    Collisions of polar 1ÎŁ^{1}\Sigma state molecules at ultralow energies are considered, within a model that accounts for long-range dipole-dipole interactions, plus rotation of the molecules. We predict a substantial suppression of dipole-driven inelastic collisions at high values of the applied electric field, namely, field values of several times Be/ÎĽB_e/\mu. Here BeB_e is the rotational constant, and ÎĽ\mu is the electric dipole moment of molecules. The sudden large drop in the inelastic cross section is attributed to the onset of degeneracy between molecular rotational levels, which dramatically alters the scattering Hamiltonian. As a result of the large ratio of elastic to inelastic collision rates, we predict that evaporative cooling may be feasible for 1ÎŁ^{1}\Sigma state molecules in weak-field-seeking states, provided a large bias electric field is present

    Field-linked States of Ultracold Polar Molecules

    Full text link
    We explore the character of a novel set of ``field-linked'' states that were predicted in [A. V. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006 (2003)]. These states exist at ultralow temperatures in the presence of an electrostatic field, and their properties are strongly dependent on the field's strength. We clarify the nature of these quasi-bound states by constructing their wave functions and determining their approximate quantum numbers. As the properties of field-linked states are strongly defined by anisotropic dipolar and Stark interactions, we construct adiabatic surfaces as functions of both the intermolecular distance and the angle that the intermolecular axis makes with the electric field. Within an adiabatic approximation we solve the 2-D Schrodinger equation to find bound states, whose energies correlate well with resonance features found in fully-converged multichannel scattering calculations

    Stability of fermionic Feshbach molecules in a Bose-Fermi mixture

    Full text link
    In the wake of successful experiments in Fermi condensates, experimental attention is broadening to study resonant interactions in degenerate Bose-Fermi mixtures. Here we consider the properties and stability of the fermionic molecules that can be created in such a mixture near a Feshbach resonance (FR). To do this, we consider the two-body scattering matrix in the many-body environment, and assess its complex poles. The stability properties of these molecules strongly depend on their centre-of-mass motion, because they must satisfy Fermi statistics. At low centre-of-mass momenta the molecules are more stable than in the absence of the environment (due to Pauli-blocking effects), while at high centre-of-mass momenta nontrivial many body effects render them somewhat less stable

    Hydrogen storage in aromatic carbon ring based molecular materials decorated with alkali or alkali-earth metals

    No full text
    On the basis of first-principles calculations of molecular electron structure, we discuss the strategy of modifying the carbon-based materials in order to increase their capacity to bind with molecular hydrogen. In particular, we have studied hydrogen adsorption on molecular complexes having anionic aromatic carbon-based rings stabilized by cations of alkali (Li+, Na+, K+) or alkali-earth metals (Be2+, Mg2+, Ca2+). The adsorption depends more on the properties of the cation than on the ring itself. The interaction of the H2 molecule with an electrostatic field leads to the binding of the hydrogen molecule with the strongly polarized ionic molecular complex. The number of the adsorbed molecules is driven by two factors acting in opposite directions: the binding energy, which should be larger than a 4–5 kJ/mol threshold needed to keep hydrogen molecules attached, and the area around the cation (coordination sphere), which is determined by its radius. As a compromise between these factors, we propose several promising candidates for building blocks of hydrogen storage materials, including diboratabenzene lithium, C4B2H6Li2, and diboratabenzene potassium, C4B2H6K2, which can adsorb 6 and 12 H2 molecules, correspondingly. We also discuss the possibility of linking these molecular complexes in three-dimensional structures.http://dx.doi.org/10.1021/jp305324phttp://pubs.acs.org/doi/pdf/10.1021/jp305324phttp://pubs.acs.org/doi/pdf/10.1021/jp305324

    Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    No full text
    Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing, and hydrogen adsorption energy. We found that the new material has extremely high hydrogen storage capacity: 22.5wt%. It is explained by high-density packing of hydrogen molecules into hydrogen layers with specific geometry. In turn, such geometry is determined by the composition and topology of the materialDepartment of Science and Technology for funding through the Hydrogen South Africa progra
    corecore