67 research outputs found

    Characterization of ARF-BP1/HUWE1 Interactions with CTCF, MYC, ARF and p53 in MYC-Driven B Cell Neoplasms

    Get PDF
    Transcriptional activation of MYC is a hallmark of many B cell lineage neoplasms. MYC provides a constitutive proliferative signal but can also initiate ARF-dependent activation of p53 and apoptosis. The E3 ubiquitin ligase, ARF-BP1, encoded by HUWE1, modulates the activity of both the MYC and the ARF-p53 signaling pathways, prompting us to determine if it is involved in the pathogenesis of MYC-driven B cell lymphomas. ARF-BP1 was expressed at high levels in cell lines from lymphomas with either wild type or mutated p53 but not in ARF-deficient cells. Downregulation of ARF-BP1 resulted in elevated steady state levels of p53, growth arrest and apoptosis. Co-immunoprecipitation studies identified a multiprotein complex comprised of ARF-BP1, ARF, p53, MYC and the multifunctional DNA-binding factor, CTCF, which is involved in the transcriptional regulation of MYC, p53 and ARF. ARF-BP1 bound and ubiquitylated CTCF leading to its proteasomal degradation. ARF-BP1 and CTCF thus appear to be key cofactors linking the MYC proliferative and p53-ARF apoptotic pathways. In addition, ARF-BP1 could be a therapeutic target for MYC-driven B lineage neoplasms, even if p53 is inactive, with inhibition reducing the transcriptional activity of MYC for its target genes and stabilizing the apoptosis-promoting activities of p53

    Value creation in the pharmaceutical industry : the critical path to innovation

    No full text
    This practical guide for advanced students and decision-makers in the pharma and biotech industry presents key success factors in R&D along with value creators in pharmaceutical innovation. A team of editors and authors with extensive experience in academia and industry and at some of the most prestigious business schools in Europe discusses in detail the innovation process in pharma as well as common and new research and innovation strategies. In doing so, they cover collaboration and partnerships, open innovation, biopharmaceuticals, translational medicine, good manufacturing practice, regulatory affairs, and portfolio management. Each chapter covers controversial aspects of recent developments in the pharmaceutical industry, with the aim of stimulating productive debates on the most effective and efficient innovation processes. A must-have for young professionals and MBA students preparing to enter R&D in pharma or biotech as well as for students on a combined BA/biomedical and natural sciences program

    Can innovation still be the main growth driver of the pharmaceutical industry?

    No full text
    In the period from the 1950s to 2013, the American Food and Drug Administration (FDA) approved 1346 new molecular entities (NMEs) or new biologics entities (NBEs). On average, the approval rate was 20 NMEs per year. In the past 40 years, the number of new drugs launched into the market increased slightly from 15 NMEs in the 1970s to 25–30 NMEs since the 1990s. The highest number of new drugs approved by FDA was in 1996 and 1997, which might be related to the enactment of the Prescription Drug User Fee Act (PDUFA) in 1993

    Changing R&D Models in Research-based Pharmaceutical Companies

    No full text
    The efficiency of pharmaceutical research and development (R&D), defined as the ability to translate R&D investments into an output, such as number of new drugs approved by the Food and Drug Administration (FDA), decreased continuously in the past years. As the industry’s main driver of growth is innovation, research-based pharmaceutical companies needed to take strong efforts and various initiatives to reduce costs and to increase their input/output-ratio of R&D. In this context, the efficiency parameters of pharmaceutical R&D and conceptual changes of R&D models are reviewed in this article

    A review of the pharmaceutical R&D efficiency : costs, timelines, and probabilities

    No full text
    It is known that the costs related with drug research and development (R&D) and the timelines to develop a new drug increased over the past years. In parallel, the success rates of drug projects along the pharmaceutical R&D phases are still very low, and the outcome of all R&D efforts is stagnating. In consequence, the R&D efficiency defined as the financial investment per drug has been steadily decreasing. As innovation is the major growth driver of the pharmaceutical industry, reliable data on R&D efficiency and new concepts to overcome these challenges are of great interest for R&D managers and the sustainability of the pharmaceutical industry as a whole. This book chapter reviews publications on R&D performance indicators of the past years, such as the success rates and timelines per phase. Additionally, it illustrates the factors influencing the success rates, timelines, and costs of pharmaceutical R&D most and, thus, the denominators of the R&D efficiency

    A review of the pharmaceutical R&D efficiency : costs, timelines, and probabilities

    No full text
    It is known that the costs related with drug research and development (R&D) and the timelines to develop a new drug increased over the past years. In parallel, the success rates of drug projects along the pharmaceutical R&D phases are still very low, and the outcome of all R&D efforts is stagnating. In consequence, the R&D efficiency defined as the financial investment per drug has been steadily decreasing. As innovation is the major growth driver of the pharmaceutical industry, reliable data on R&D efficiency and new concepts to overcome these challenges are of great interest for R&D managers and the sustainability of the pharmaceutical industry as a whole. This book chapter reviews publications on R&D performance indicators of the past years, such as the success rates and timelines per phase. Additionally, it illustrates the factors influencing the success rates, timelines, and costs of pharmaceutical R&D most and, thus, the denominators of the R&D efficiency
    • …
    corecore