8 research outputs found

    A Functional Screen Provides Evidence for a Conserved, Regulatory, Juxtamembrane Phosphorylation Site in Guanylyl Cyclase A and B

    Get PDF
    Kinase homology domain (KHD) phosphorylation is required for activation of guanylyl cyclase (GC)-A and -B. Phosphopeptide mapping identified multiple phosphorylation sites in GC-A and GC-B, but these approaches have difficulty identifying sites in poorly detected peptides. Here, a functional screen was conducted to identify novel sites. Conserved serines or threonines in the KHDs of phosphorylated receptor GCs were mutated to alanine and tested for reduced hormone to detergent activity ratios. Mutation of Ser-489 in GC-B to alanine but not glutamate reduced the activity ratio to 60% of wild type (WT) levels. Similar results were observed with Ser-473, the homologous site in GC-A. Receptors containing glutamates for previously identified phosphorylation sites (GC-A-6E and GC-B-6E) were activated to ∌20% of WT levels but the additional glutamate substitution for S473 or S489 increased activity to near WT levels. Substrate-velocity assays indicated that GC-B-WT-S489E and GC-B-6E-S489E had lower Km values and that WT-GC-B-S489A, GC-B-6E and GC-B-6E-S489A had higher Km values than WT-GC-B. Homologous desensitization was enhanced when GC-A contained the S473E substitution, and GC-B-6E-S489E was resistant to inhibition by a calcium elevating treatment or protein kinase C activation – processes that dephosphorylate GC-B. Mass spectrometric detection of a synthetic phospho-Ser-473 containing peptide was 200–1300-fold less sensitive than other phosphorylated peptides and neither mass spectrometric nor 32PO4 co-migration studies detected phospho-Ser-473 or phospho-Ser-489 in cells. We conclude that Ser-473 and Ser-489 are Km-regulating phosphorylation sites that are difficult to detect using current methods

    Healthcare information technology interventions to improve cardiovascular and diabetes medication adherence

    No full text
    OBJECTIVE: To determine the efficacy of healthcare information technology (HIT) interventions in improving adherence. STUDY DESIGN: Systematic search of randomized controlled trials of HIT interventions to improve medication adherence in cardiovascular disease or diabetes. METHODS: Interventions were classified as 1-way patient reminder systems, 2-way interactive systems, and systems to enhance patient-provider interaction. Studies were subclassified into those with and without real-time provider feedback. Cohen\u27s d effect sizes were calculated to assess each intervention\u27s magnitude of effectiveness. RESULTS: We identified 7190 articles, only 13 of which met inclusion criteria. The majority of included studies (54%, 7 studies) showed a very small ES. The effect size was small in 15%, large in 8%, and was not amenable to calculation in the remainder. Reminder systems were consistently effective, showing the largest effect sizes in this review. Education/counseling HIT systems were less successful, as was the addition of realtime adherence feedback to healthcare providers. Interactive systems were rudimentary and not integrated into electronic health records; they exhibited very small effect sizes. Studies aiming to improve patient-provider communication also had very small effect sizes. CONCLUSIONS: There is a paucity of data about HIT\u27s efficacy in improving adherence to medications for cardiovascular disease and diabetes, although simple patient reminder systems appear effective. Future studies should focus on more sophisticated interactive interventions that expand the functionality and capabilities of HIT and better engage patients in care

    Cardiovascular Activity

    No full text

    The atrial natriuretic factor: Its physiology and biochemistry

    No full text
    corecore