11 research outputs found

    Sequencing of the Sea Lamprey (Petromyzon marinus) Genome Provides Insights into Vertebrate Evolution

    Get PDF
    Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∌500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms

    Dataset of transcriptional landscape of B cell early activation

    No full text
    Signaling via B cell receptors (BCR) and Toll-like receptors (TLRs) result in activation of B cells with distinct physiological outcomes, but transcriptional regulatory mechanisms that drive activation and distinguish these pathways remain unknown. At early time points after BCR and TLR ligand exposure, 0.5 and 2 h, RNA-seq was performed allowing observations on rapid transcriptional changes. At 2 h, ChIP-seq was performed to allow observations on important regulatory mechanisms potentially driving transcriptional change. The dataset includes RNA-seq, ChIP-seq of control (Input), RNA Pol II, H3K4me3, H3K27me3, and a separate RNA-seq for miRNA expression, which can be found at Gene Expression Omnibus Dataset GSE61608. Here, we provide details on the experimental and analysis methods used to obtain and analyze this dataset and to examine the transcriptional landscape of B cell early activation

    A deep learning approach to programmable RNA switches

    No full text
    Engineered RNA elements are programmable tools capable of detecting small molecules, proteins, and nucleic acids. Predicting the behavior of these synthetic biology components remains a challenge, a situation that could be addressed through enhanced pattern recognition from deep learning. Here, we investigate Deep Neural Networks (DNN) to predict toehold switch function as a canonical riboswitch model in synthetic biology. To facilitate DNN training, we synthesize and characterize in vivo a dataset of 91,534 toehold switches spanning 23 viral genomes and 906 human transcription factors. DNNs trained on nucleotide sequences outperform (R = 0.43–0.70) previous state-of-the-art thermodynamic and kinetic models (R = 0.04–0.15) and allow for human-understandable attention-visualizations (VIS4Map) to identify success and failure modes. This work shows that deep learning approaches can be used for functionality predictions and insight generation in RNA synthetic biology. 2

    Poised RNA Polymerase II Changes over Developmental Time and Prepares Genes for Future Expression

    Get PDF
    Poised RNA polymerase II (Pol II) is predominantly found at developmental control genes and is thought to allow their rapid and synchronous induction in response to extracellular signals. How the recruitment of poised RNA Pol II is regulated during development is not known. By isolating muscle tissue from Drosophila embryos at five stages of differentiation, we show that the recruitment of poised Pol II occurs at many genes de novo and this makes them permissive for future gene expression. A comparison with other tissues shows that these changes are stage specific and not tissue specific. In contrast, Polycomb group repression is tissue specific, and in combination with Pol II (the balanced state) marks genes with highly dynamic expression. This suggests that poised Pol II is temporally regulated and is held in check in a tissue-specific fashion. We compare our data with findings in mammalian embryonic stem cells and discuss a framework for predicting developmental programs on the basis of the chromatin state

    An unbiased index to quantify participant’s phenotypic contribution to an open-access cohort

    Get PDF
    The Personal Genome Project (PGP) is an effort to enroll many participants to create an open-access repository of genome, health and trait data for research. However, PGP participants are not enrolled for studying any specific traits and participants choose the phenotypes to disclose. To measure the extent and willingness and to encourage and guide participants to contribute phenotypes, we developed an algorithm to score and rank the phenotypes and participants of the PGP. The scoring algorithm calculates the participation index (P-index) for every participant, where 0 indicates no reported phenotypes and 100 indicate complete phenotype reporting. We calculated the P-index for all 5,015 participants in the PGP and they ranged from 0 to 96.7. We found that participants mainly have either high scores (P-index > 90, 29.5%) or low scores (P-index < 10, 57.8%). While, there are significantly more males than female participants (1,793 versus 1,271), females tend to have on average higher P-indexes (P = 0.015). We also reported the P-indexes of participants based on demographics and states like Missouri and Massachusetts have better P-indexes than states like Utah and Minnesota. The P-index can therefore be used as an unbiased way to measure and rank participant’s phenotypic contribution towards the PGP

    Engineering an allosteric transcription factor to respond to new ligands

    No full text
    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol or sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl ÎČ-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits
    corecore