1,616 research outputs found

    A role for Q/N-rich aggregation-prone regions in P-body localization

    Get PDF
    P-bodies are cytoplasmic foci that are sites of mRNA degradation and translational repression. It is not known what causes the accumulation of RNA degradation factors in P-bodies, although RNA is required. The yeast Lsm1-7p complex is recruited to P-bodies under certain stress conditions. It is required for efficient decapping and degradation of mRNAs, but not for the assembly of P-bodies. Here we show that the Lsm4p subunit and its asparagine-rich carboxy-terminus are prone to aggregation and that this tendency to aggregate promotes efficient accumulation of Lsm1-7p in P-bodies. The presence of Q/N-rich regions in other P-body components suggests a more general role for aggregation-prone residues in P-body localization and assembly. This is supported by reduced P-body accumulation of Ccr4p, Pop2p and Dhh1p after deletion of these domains, and by the observed aggregation of the Q/N-rich region from Ccr4p

    Job Shadowing Experiences as a Teaching Tool: A New Twist on a Tried and True Technique

    Get PDF
    Job shadowing has a long history of utilization. It is primarily considered a way for youth to become aware of the world-of-work through programs sponsored by schools or social organizations. For example, Junior Achievement International, in cooperation with several government agencies, has sponsored Groundhog Job Shadow Day for nearly 20 years. A quick internet search for job shadowing yielded over 24 million hits with the vast majority of those focused on programs aimed at high school students. Internet offerings detail anecdotal accounts of experiences, methods for setting up and executing programs, and extolment of the virtues of shadowing as a tool for high school students to prepare for college career direction. Other internet offerings focus on employer-developed programs aimed at internal advancement or as a recruitment tool for potential employees. There has been very little published addressing the use of job shadowing at the college level. Yet, job shadowing can be a great tool for college students to explore potential careers prior to committing to a specific major. This project details a pilot program in which professional selling students engage in a job shadowing experience that yields not only personal experience for themselves, but that also generates information which can be used as a teaching tool for all students

    Quantumgroups in the Higgs Phase

    Get PDF
    In the Higgs phase we may be left with a residual finite symmetry group H of the condensate. The topological interactions between the magnetic- and electric excitations in these so-called discrete H gauge theories are completely described by the Hopf algebra or quantumgroup D(H). In 2+1 dimensional space time we may add a Chern-Simons term to such a model. This deforms the underlying Hopf algebra D(H) into a quasi-Hopf algebra by means of a 3-cocycle H. Consequently, the finite number of physically inequivalent discrete H gauge theories obtained in this way are labelled by the elements of the cohomology group H^3(H,U(1)). We briefly review the above results in these notes. Special attention is given to the Coulomb screening mechanism operational in the Higgs phase. This mechanism screens the Coulomb interactions, but not the Aharonov-Bohm interactions. (Invited talk given by Mark de Wild Propitius at `The III International Conference on Mathematical Physics, String Theory and Quantum Gravity', Alushta, Ukraine, June 13-24, 1993. To be published in Theor. Math. Phys.)Comment: 19 pages in Latex, ITFA-93-3

    Axion-induced oscillations of cooperative electric field in a cosmic magneto-active plasma

    Full text link
    We consider one cosmological application of an axionic extension of the Maxwell-Vlasov theory, which describes axionically induced oscillatory regime in the state of global magnetic field evolving in the anisotropic expanding (early) universe. We show that the cooperative electric field in the relativistic plasma, being coupled to the pseudoscalar (axion) and global magnetic fields, plays the role of a regulator in this three-level system; in particular, the cooperative (Vlasov) electric field converts the regime of anomalous growth of the pseudoscalar field, caused by the axion-photon coupling at the inflationary epoch of the universe expansion, into an oscillatory regime with finite density of relic axions. We analyze solutions to the dispersion equations for the axionically induced cooperative oscillations of the electric field in the relativistic plasma.Comment: 7 pages, misprints correcte

    Structural, item, and test generalizability of the psychopathology checklist - revised to offenders with intellectual disabilities

    Get PDF
    The Psychopathy Checklist–Revised (PCL-R) is the most widely used measure of psychopathy in forensic clinical practice, but the generalizability of the measure to offenders with intellectual disabilities (ID) has not been clearly established. This study examined the structural equivalence and scalar equivalence of the PCL-R in a sample of 185 male offenders with ID in forensic mental health settings, as compared with a sample of 1,212 male prisoners without ID. Three models of the PCL-R’s factor structure were evaluated with confirmatory factor analysis. The 3-factor hierarchical model of psychopathy was found to be a good fit to the ID PCL-R data, whereas neither the 4-factor model nor the traditional 2-factor model fitted. There were no cross-group differences in the factor structure, providing evidence of structural equivalence. However, item response theory analyses indicated metric differences in the ratings of psychopathy symptoms between the ID group and the comparison prisoner group. This finding has potential implications for the interpretation of PCL-R scores obtained with people with ID in forensic psychiatric settings

    Critical temperature oscillations in magnetically coupled superconducting mesoscopic loops

    Full text link
    We study the magnetic interaction between two superconducting concentric mesoscopic Al loops, close to the superconducting/normal phase transition. The phase boundary is measured resistively for the two-loop structure as well as for a reference single loop. In both systems Little-Parks oscillations, periodic in field are observed in the critical temperature Tc versus applied magnetic field H. In the Fourier spectrum of the Tc(H) oscillations, a weak 'low frequency' response shows up, which can be attributed to the inner loop supercurrent magnetic coupling to the flux of the outer loop. The amplitude of this effect can be tuned by varying the applied transport current.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Diffusion in a generalized Rubinstein-Duke model of electrophoresis with kinematic disorder

    Get PDF
    Using a generalized Rubinstein-Duke model we prove rigorously that kinematic disorder leaves the prediction of standard reptation theory for the scaling of the diffusion constant in the limit for long polymer chains D∝L−2D \propto L^{-2} unaffected. Based on an analytical calculation as well as Monte Carlo simulations we predict kinematic disorder to affect the center of mass diffusion constant of an entangled polymer in the limit for long chains by the same factor as single particle diffusion in a random barrier model.Comment: 29 pages, 3 figures, submitted to PR

    Water in alkali feldspar: The effect of rhyolite generation on the lunar hydrogen budget

    Get PDF
    Recent detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass (Saal et al., 2008), melt inclusions (Hauri et al., 2011), apatite (Boyce et al., 2010; McCubbin et al., 2010), and plagioclase (Hui et al., 2013) suggests water played a role in the chemical differentiation of the Moon. Water contents measured in plagioclase feldspar, a dominant mineral in the ancient crustal lunar highlands have been used to predict that 320 ppm water initially existed in the lunar magma ocean (Hui et al., 2013) whereas measurements in apatite, found as a minor mineral in lunar rocks, representing younger potassium-enriched melt predict a bulk Moon with <100 ppm water. Here we show that water in alkali feldspar, a common mineral in potassium-enriched rocks, can have ∌20 ppm water, which implies magmatic water contents of ∌1 wt. % in chemically evolved rhyolitic magmas. The source for these wet, potassium-rich magmas probably contained ∌1000 ppm H2O. Thus, lunar granites with ages from 4.3-3.9 Ga (Meyer et al., 1996) likely crystallised from relatively wet melts that degassed upon crystallisation. Geochemical surveys by the Lunar Prospector (Jolliff et al., 2011) and Diviner Lunar Radiometer Experiment (Glotch et al., 2010; Jolliff et al., 2011) indicating the global significance of evolved igneous rocks suggest that the formation of these granites removed water from some mantle source regions, helping to explain the existence of mare basalts with <10 ppm water, but must have left regions of the interior relatively wet as seen by the water content in volcanic glass and melt inclusions. Although these early-formed evolved melts were water-rich, their petrogenesis supports the conclusion that the Moon's mantle had <100 ppm water for most of its history
    • 

    corecore