49 research outputs found

    IL-1 cytokine family members and NAFLD: Neglected in metabolic liver inflammation

    Get PDF

    Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD

    Get PDF
    Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens

    Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice

    Get PDF
    BACKGROUND/AIMS: Recent reports suggest that the adipose tissue and adipokines are potent modulators of inflammation. However, there is only scarce knowledge on the functional role and regulation of endogenous adiponectin in non-fat tissues such as the liver under conditions of acute inflammation. METHODS: In the present study, we investigated adiponectin expression in healthy murine liver tissue and under inflammatory conditions in vivo. RESULTS: Adiponectin mRNA was readily detectable in healthy liver tissue and further increased in ConA-mediated acute liver failure. Adiponectin protein expression was mainly found in hepatic endothelial cells. In vitro adiponectin mRNA expression was detectable in several cell types, including primary hepatic sinusoidal endothelial cells, stellate cells, and macrophages. Mice pretreated with adiponectin before ConA administration developed reduced hepatic injury as shown by decreased release of transaminases and reduced hepatocellular apoptotis. Of note, TNF-alpha levels were not affected by adiponectin, whereas IL-10 production was increased. Neutralisation of IL-10 diminished the protective effect of adiponectin. CONCLUSIONS: Adiponectin expression is up-regulated in ConA-mediated acute liver failure. Therefore, adiponectin might play a role in the control and limitation of inflammation in the liver. Moreover, our data suggest a role for IL-10 in adiponectin-mediated hepatoprotection

    Modelling the benefits of an optimised treatment strategy for 5-ASA in mild-to-moderate ulcerative colitis.

    Get PDF
    peer reviewedOBJECTIVES: 5-aminosalicylate (mesalazine; 5-ASA) is an established first-line treatment for mild-to-moderate ulcerative colitis (UC). This study aimed to model the benefits of optimising 5-ASA therapy. METHODS: A decision tree model followed 10 000 newly diagnosed patients with mild-to-moderately active UC through induction and 1 year of maintenance treatment. Optimised treatment (maximising dose of 5-ASA and use of combined oral and rectal therapy before treatment escalation) was compared with standard treatment (standard doses of 5-ASA without optimisation). Modelled data were derived from published meta-analyses. The primary outcomes were patient numbers achieving and maintaining remission, with an analysis of treatment costs for each strategy conducted as a secondary outcome (using UK reference costs). RESULTS: During induction, there was a 39% increase in patients achieving remission through the optimised pathway without requiring systemic steroids and/or biologics (6565 vs 4725 for standard). Potential steroidal/biological adverse events avoided included: seven venous thromboembolisms and eight serious infections. Out of the 6565 patients entering maintenance following successful induction on 5-ASA, there was a 21% reduction in relapses when optimised (1830 vs 2311 for standard). This translated into 297 patients avoiding further systemic steroids and 214 biologics. Optimisation led to an average net saving of £272 per patient entering the model for the induction and maintenance of remission over 1 year. CONCLUSION: Modelling suggests that optimising 5-ASA therapy (both the inclusion of rectal 5-ASA into a combined oral and rectal regimen and maximisation of 5-ASA dose) has clinical and cost benefits that supports wider adoption in clinical practice

    A gut bacterial signature in blood and liver tissue characterizes cirrhosis and hepatocellular carcinoma

    Get PDF
    BackgroundHCC is the leading cause of cancer in chronic liver disease. A growing body of experimental mouse models supports the notion that gut-resident and liver-resident microbes control hepatic immune responses and, thereby, crucially contribute to liver tumorigenesis. However, a comprehensive characterization of the intestinal microbiome in fueling the transition from chronic liver disease to HCC in humans is currently missing.MethodsHere, we profiled the fecal, blood, and liver tissue microbiome of patients with HCC by 16S rRNA sequencing and compared profiles to nonmalignant cirrhotic and noncirrhotic NAFLD patients.ResultsWe report a distinct bacterial profile, defined from 16S rRNA gene sequences, with reduced α-and β-diversity in the feces of patients with HCC and cirrhosis compared to NAFLD. Patients with HCC and cirrhosis exhibited an increased proportion of fecal bacterial gene signatures in the blood and liver compared to NAFLD. Differential analysis of the relative abundance of bacterial genera identified an increased abundance of Ruminococcaceae and Bacteroidaceae in blood and liver tissue from both HCC and cirrhosis patients compared to NAFLD. Fecal samples from cirrhosis and HCC patients both showed a reduced abundance for several taxa, including short-chain fatty acid-producing genera, such as Blautia and Agathobacter. Using paired 16S rRNA and transcriptome sequencing, we identified a direct association between gut bacterial genus abundance and host transcriptome response within the liver tissue.ConclusionsOur study indicates perturbations of the intestinal and liver-resident microbiome as a critical determinant of patients with cirrhosis and HCC

    Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis

    No full text
    Both alcoholic liver disease (ALD) and nonalcoholic fatty liver disease are characterized by massive lipid accumulation in the liver accompanied by inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma in a substantial subgroup of patients. At several stages in these diseases, mediators of the immune system, such as cytokines or inflammasomes, are crucially involved. In ALD, chronic ethanol exposure sensitizes Kupffer cells to activation by lipopolysaccharides through Toll-like receptors, e.g., Toll-like receptor 4. This sensitization enhances the production of various proinflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor-alpha, thereby contributing to hepatocyte dysfunction, necrosis, and apoptosis and the generation of extracellular matrix proteins leading to fibrosis/cirrhosis. Indeed, neutralization of IL-1 by IL-1 receptor antagonist has recently been shown to potently prevent liver injury in murine models of ALD. As IL-1 is clearly linked to key clinical symptoms of acute alcoholic hepatitis such as fever, neutrophilia, and wasting, interfering with the IL-1 pathway might be an attractive treatment strategy in the future. An important role for IL-1-type cytokines and certain inflammasomes has also been demonstrated in murine models of nonalcoholic fatty liver disease. IL-1-type cytokines can regulate hepatic steatosis; the NLR family pyrin domain containing 3 inflammasome is critically involved in metabolic dysregulation. CONCLUSION: IL-1 cytokine family members and various inflammasomes mediate different aspects of both ALD and nonalcoholic fatty liver disease
    corecore