11 research outputs found

    A novel splice site variant in CYP11A1 in trans with the p.E314K variant in a male patient with congenital adrenal insufficiency

    Get PDF
    Background: The CYP11A1 gene encodes the cytochrome P450 side‐chain cleavage enzyme, which is essential for steroid formation. Recessive variants in this gene can lead to impairment of sexual differentiation caused by a complete or partial loss of steroid hormone production. The phenotypic spectrum in affected 46XY males may vary from surgically repairable defects including cryptorchidism and hypospadias to complete feminization of external gonads, accompanied by symptoms of adrenal dysfunction. Methods Whole‐exome sequencing (WES) of a 12‐year‐old male proband and his parents was performed after a protracted diagnostic odyssey failed to uncover the cause of his primary adrenal insufficiency. Of note, the proband had early symptomatology and corrective surgery for hypospadias, raising suspicion for a disorder of steroidogenesis. Results: WES identified compound heterozygous variants in CYP11A1 including a novel canonical splice site variant (c.425+1G>A) and a previously reported p.E314K variant, which were consistent with a diagnosis of congenital adrenal insufficiency with partial 46XY sex reversal. Conclusion: Congenital adrenal insufficiency with 46XY sex reversal is a rare disorder that is characterized by dysregulation of steroid hormone synthesis, leading to adrenal and gonadal dysfunction. In this report, we describe a patient with adrenal insufficiency, hypospadias, and skin hyperpigmentation who was found to have a novel c.425+1G>A variant in trans with the p.E314K variant in CYP11A1. We performed structural analyses to examine the effect of the p.E314K variant on protein function and show that it falls in the core of the protein may disrupt cholesterol binding in the active site

    Evaluating the Effects of Cerebrospinal Fluid Protein Content on the Performance of Differential Pressure Valves and Antisiphon Devices Using a Novel Benchtop Shunting Model

    Get PDF
    BACKGROUNDHydrocephalus is managed by surgically implanting flow-diversion technologies such as differential pressure valves and antisiphoning devices; however, such hardware is prone to failure. Extensive research has tested them in flow-controlled settings using saline or de-aerated water, yet little has been done to validate their performance in a setting recreating physiologically relevant parameters, including intracranial pressures, cerebrospinal fluid (CSF) protein content, and body position.OBJECTIVETo more accurately chart the episodic drainage characteristics of flow-diversion technology. A gravity-driven benchtop model of flow was designed and tested continuously during weeks-long trials.METHODSUsing a hydrostatic pressure gradient as the sole driving force, interval flow rates of 6 valves were examined in parallel with various fluids. Daily trials in the upright and supine positions were run with fluid output collected from distal catheters placed at alternating heights for extended intervals.RESULTSSignificant variability in flow rates was observed, both within specific individual valves across different trials and among multiple valves of the same type. These intervalve and intravalve variabilities were greatest during supine trials and with increased protein. None of the valves showed evidence of overt obstruction during 30 d of exposure to CSF containing 5 g/L protein.CONCLUSIONDay-to-day variability of ball-in-cone differential pressure shunt valves may increase overdrainage risk. Narrow-lumen high-resistance flow control devices as tested here under similar conditions appear to achieve more consistent flow rates, suggesting their use may be advantageous, and did not demonstrate any blockage or trend of decreasing flow over the 3 wk of chronic use

    Utilization of Augmented Reality Head-Mounted Display for the Surgical Management of Thoracolumbar Spinal Trauma

    Get PDF
    Background and Objectives: Augmented reality head-mounted display (AR-HMD) is a novel technology that provides surgeons with a real-time CT-guided 3-dimensional recapitulation of a patient’s spinal anatomy. In this case series, we explore the use of AR-HMD alongside more traditional robotic assistance in surgical spine trauma cases to determine their effect on operative costs and perioperative outcomes. Materials and Methods: We retrospectively reviewed trauma patients who underwent pedicle screw placement surgery guided by AR-HMD or robotic-assisted platforms at an academic tertiary care center between 1 January 2021 and 31 December 2022. Outcome distributions were compared using the Mann–Whitney U test. Results: The AR cohort (n = 9) had a mean age of 66 years, BMI of 29.4 kg/m2, Charlson Comorbidity Index (CCI) of 4.1, and Surgical Invasiveness Index (SII) of 8.8. In total, 77 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 378 mL, 0.78 units transfused, 398 min spent in the operating room, and a 20-day LOS. The robotic cohort (n = 13) had a mean age of 56 years, BMI of 27.1 kg/m2, CCI of 3.8, and SII of 14.2. In total, 128 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 432 mL, 0.46 units transfused units used, 331 min spent in the operating room, and a 10.4-day LOS. No significant difference was found between the two cohorts in any outcome metrics. Conclusions: Although the need to address urgent spinal conditions poses a significant challenge to the implementation of innovative technologies in spine surgery, this study represents an initial effort to show that AR-HMD can yield comparable outcomes to traditional robotic surgical techniques. Moreover, it highlights the potential for AR-HMD to be readily integrated into Level 1 trauma centers without requiring extensive modifications or adjustments

    Angiotensinogen rs5050 germline genetic variant as potential biomarker of poor prognosis in astrocytoma.

    No full text
    INTRODUCTION:Renin-angiotensin system (RAS) in brain cancer represents a scarcely explored field in neuro-oncology. Recently, some pre- and clinical studies have reported that RAS components play a relevant role in the development and behavior of gliomas. The angiotensinogen (AGT) rs5050 genetic variant has been identified as a crucial regulator of the transcription of AGT mRNA, which makes it a logical and promising target of research. The aim of this study was to determine the relationship between the AGT rs5050 genetic variant in blood with prognosis in astrocytoma. METHODS:A prospective pilot study was performed on forty-eight astrocytoma patients, who received the standard-of-care treatment. Blood samples were taken prior to surgery and DNA was sequenced using Ion Torrent next-generation sequencing and analyzed by Ion Reporter software. Descriptive, bivariate, multivariate, and survival analyses were performed using SPSS v21, STATA 12 and GraphPad Prism 7. RESULTS:Median follow-up was 41 months (range 1-48). Survival analysis showed a significant difference between the rs5050 genotypes (p = .05). We found lower survival rates in individuals with the GG-genotype of rs5050 AGT compared to patients with the TT- and TG-genotype (2 months vs. 11.5 months, respectively [p = .01]). In bivariate and multivariate analyses, GG-genotype was negatively associated with survival. CONCLUSIONS:In patients with astrocytoma, AGT rs5050 GG-genotype was associated with poor prognosis. We propose this germline genetic variant as a complementary biomarker, which can be detected practically and safely in blood samples or saliva

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    corecore