73 research outputs found

    Preface to measurement, specification and forecasting of the Solar Energetic Particle (SEP) environment and Ground Level Enhancements (GLEs)

    Get PDF
    The Sun emits energetic particles following eruptive events such as solar flares and Coronal Mass Ejections (CMEs). Solar Energetic Particles (SEPs) arrive in bursts known as Solar Particle Events (SPEs), which penetrate into the Earth’s magnetosphere. SEPs with large enough energy induce a complicated atmospheric cascade, which secondary particles lead to an enhancement of count rate of ground-based detectors e.g. Neutron Monitors (NMs). This class of SEPs is therefore referred as Ground Level Enhancements (GLEs). The characterisation of the high-energy SEPs environment with corresponding space weather effects is important for space flights, aviation, and satellite industry. In this topical issue recent developments, addressing important user needs in the space radiation environment domain are published. Some articles are relevant to the specification of the SEP environment whilst others focus on space weather prediction of SEP fluxes. Catalogues based on measurement and processing of SEPs including ground-based data, and modelling of aircrew radiation exposure during major events are also presented

    Assessment of the radiation risk at flight altitudes for an extreme solar particle storm of 774 AD

    Get PDF
    Intense solar activity can lead to an acceleration of solar energetic particles and accordingly increase in the complex radiation field at commercial aviation flight altitudes. We considered here the strongest ever reported event, namely that of 774 AD registered on the basis of cosmogenic-isotope measurements, and computed the ambient dose at aviation altitude(s). Since the spectrum of solar protons during the 774 AD event cannot be directly obtained, as a first step, we derived the spectra of the solar protons during the ground level enhancement (GLE) #5 on 23 February 1956, the strongest event observed by direct measurements, which was subsequently scaled to the size of the 774 AD event and eventually used as input to the corresponding radiation model. The GLE #5 was considered a conservative approach because it revealed the hardest-ever derived energy spectrum. The global map of the ambient dose was computed under realistic data-based reconstruction of the geomagnetic field during the 774 AD epoch, based on paleomagnetic measurements. A realistic approach on the basis of a GLE #45 on 24 October 1989 was also considered, that is by scaling an event with softer spectra and lower particle fluxes compared to the GLE #5. The altitude dependence of the event-integrated dose at altitudes from 30 kft to 50 kft (9.1–15.2 km) was also computed for both scenarios. Our study of the radiation effects during the extreme event of 774 AD gives the necessary basis to be used as a reference to assess the worst-case scenario for a specific threat, that is radiation dose at flight altitudes

    Mass composition and energy spectrum studies of primary cosmic rays in energy range 10TeV-10PeV using atmo- spheric Cerenkov light telescope

    Get PDF
    Abstract The primary cosmic ray flux is investigated using a previously proposed new method for estimation of the mass composition and the energy spectrum of primary cosmic radiation based only on atmospheric Cerenkov light flux analysis. The densities of this flux in extensive air showers initiated by primary proton, helium, carbon, iron nuclei and gamma quanta are simulated with CORSIKA 5.62 code for Chacaltaya observation level in the energy range 10 Tev -10 PeV. An adequate model for approximation of lateral distribution of Cerenkov light in showers of mentioned above primaries is exploited. The mixed mass composition taken into account the abundances according the latest experimental data is simulated and the influence of energy and shower axis determination accuracies is studied. Two different detector displacements of atmospheric Cerenkov detectors are compared

    Interplanetary Protons versus Interacting Protons in the 2017 September 10 Solar Eruptive Event

    Get PDF
    We analyze the relativistic proton emission from the Sun during the eruptive event on 2017 September 10, which caused a ground-level enhancement (GLE 72) registered by the worldwide network of neutron monitors. Using the neutron monitor data and interplanetary transport modeling both along and across interplanetary magnetic field (IMF) lines, we deduce parameters of the proton injection into the interplanetary medium. The inferred injection profile of the interplanetary protons is compared with the profile of the >100 MeV γ-ray emission observed by the Fermi Large Area Telescope, attributed to pion production from the interaction of >300 MeV protons at the Sun. GLE 72 started with a prompt component that arrived along the IMF lines. This was followed by a more prolonged enhancement caused by protons arriving at the Earth across the IMF lines from the southwest. The interplanetary proton event is modeled using two sources—one source at the root of the Earth-connected IMF line and another source situated near the solar western limb. The maximum phase of the second injection of interplanetary protons coincides with the maximum phase of the prolonged >100 MeV γ-ray emission that originated from a small area at the solar western limb, below the current sheet trailing the associated coronal mass ejection (CME). A possible common source of interacting protons and interplanetary protons is discussed in terms of proton acceleration at the CME bow shock versus coronal (re-)acceleration in the wake of the CME

    A new model of cosmogenic production of radiocarbon 14C in the atmosphere

    Full text link
    We present the results of full new calculation of radiocarbon 14C production in the Earth atmosphere, using a numerical Monte-Carlo model. We provide, for the first time, a tabulated 14C yield function for the energy of primary cosmic ray particles ranging from 0.1 to 1000 GeV/nucleon. We have calculated the global production rate of 14C, which is 1.64 and 1.88 atoms/cm2/s for the modern time and for the pre-industrial epoch, respectively. This is close to the values obtained from the carbon cycle reservoir inventory. We argue that earlier models overestimated the global 14C production rate because of outdated spectra of cosmic ray heavier nuclei. The mean contribution of solar energetic particles to the global 14C is calculated as about 0.25% for the modern epoch. Our model provides a new tool to calculate the 14C production in the Earth's atmosphere, which can be applied, e.g., to reconstructions of solar activity in the past.Comment: Published in EPSL, 337, 114, 201

    High-Resolution Spectral and Anisotropy Characteristics of Solar Protons During the GLE N(circle)73 on 28 October 2021 Derived with Neutron-Monitor Data Analysis

    Get PDF
    The first ground-level enhancement of the current Solar Cycle 25 occurred on 28 October 2021. It was observed by several space-borne and ground-based instruments, specifically neutron monitors. A moderate count-rate increase over the background was observed by high-altitude polar stations on the South Pole and Dome C stations at the Antarctic plateau. Most of the neutron monitors registered only marginal count-rate increases. Using detrended records and employing a method verified by direct space-borne measurements, we derive the rigidity spectra and angular distributions of the incoming solar protons in the vicinity of Earth. For the analysis, we employed a newly computed and parameterized neutron-monitor yield function. The rigidity spectra and anisotropy of solar protons were obtained in their time evolution throughout the event. A comparison with the Solar and Heliospheric Observatory/Energetic and Relativistic Nuclei and Electron (SOHO/ENRE) experiment data is also performed. We briefly discuss the results derived from our analysis
    • …
    corecore