568 research outputs found
Polymer-supported palladium-imidazole complex catalyst for hydrogenation of substituted benzylideneanilines
The polymer-supported palladium-imidazole complex catalyst was synthesized and characterized by various techniques such as elemental analysis, IR spectroscopy and TG analysis. The physico-chemical properties such as bulk density, surface studies by BET method and swelling studies of catalyst in different solvents were investigated. XPS studies were carried out to identify the oxidation state of palladium in the catalyst. The morphology of the support and the catalyst was studied using scanning electron microscope. Using the synthesized catalyst, hydrogenation of benzylideneaniline and a few of its para substituted derivatives was carried out at ambient conditions. The influence of variation in temperature, concentration of the catalyst as well as the substrate on the rate of reaction was studied. The catalyst showed an excellent recycling efficiency over six cycles without leaching of metal from the polymer support. © 2009 Elsevier B.V. All rights reserved
Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel
Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends
To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread. Exhaust toxicity of unblended biodiesels changes depending on feedstock type, however the effect of feedstock on blended fuels is less well known. The aim of this study was to assess the impact of biodiesel feedstock on exhaust toxicity of 20% blended biodiesel fuels (B20). Primary human airway epithelial cells were exposed to exhaust diluted 1/15 with air from an engine running on conventional ultra-low sulfur diesel (ULSD) or 20% blends of soy, canola, waste cooking oil (WCO), tallow, palm or cottonseed biodiesel in diesel. Physico-chemical exhaust properties were compared between fuels and the post-exposure effect of exhaust on cellular viability and media release was assessed 24 h later. Exhaust properties changed significantly between all fuels with cottonseed B20 being the most different to both ULSD and its respective unblended biodiesel. Exposure to palm B20 resulted in significantly decreased cellular viability (96.3 ± 1.7%; p < 0.01) whereas exposure to soy B20 generated the greatest number of changes in mediator release (including IL-6, IL-8 and TNF-α, p < 0.05) when compared to air exposed controls, with palm B20 and tallow B20 closely following. In contrast, canola B20 and WCO B20 were the least toxic with only mediators G-CSF and TNF-α being significantly increased. Therefore, exposure to palm B20, soy B20 and tallow B20 were found to be the most toxic and exposure to canola B20 and WCO B20 the least. The top three most toxic and the bottom three least toxic B20 fuels are consistent with their unblended counterparts, suggesting that feedstock type greatly impacts exhaust toxicity, even when biodiesel only comprises 20% of the fuel
Recommended from our members
A conceptual framework for studying collective reactions to events in location-based social media
Events are a core concept of spatial information, but location-based social media (LBSM) provide information on reactions to events. Individuals have varied degrees of agency in initiating, reacting to or modifying the course of events, and reactions include observations of occurrence, expressions containing sentiment or emotions, or a call to action. Key characteristics of reactions include referent events and information about who reacted, when, where and how. Collective reactions are composed of multiple individual reactions sharing common referents. They can be characterized according to the following dimensions: spatial, temporal, social, thematic and interlinkage. We present a conceptual framework, which allows characterization and comparison of collective reactions. For a thematically well-defined class of event such as storms, we can explore differences and similarities in collective attribution of meaning across space and time. Other events may have very complex spatio-temporal signatures (e.g. political processes such as Brexit or elections), which can be decomposed into series of individual events (e.g. a temporal window around the result of a vote). The purpose of our framework is to explore ways in which collective reactions to events in LBSM can be described and underpin the development of methods for analysing and understanding collective reactions to events
Minimal Higher-Dimensional Extensions of the Standard Model and Electroweak Observables
We consider minimal 5-dimensional extensions of the Standard Model
compactified on an orbifold, in which the SU(2) and U(1)
gauge fields and Higgs bosons may or may not all propagate in the fifth
dimension while the observable matter is always assumed to be confined to a
4-dimensional subspace. We pay particular attention to consistently quantize
the higher-dimensional models in the generalized gauge and derive
analytic expressions for the mass spectrum of the resulting Kaluza-Klein states
and their couplings to matter. Based on recent data from electroweak precision
tests, we improve previous limits obtained in the 5-dimensional Standard Model
with a common compactification radius and extend our analysis to other possible
5-dimensional Standard-Model constructions. We find that the usually derived
lower bound of TeV on an universal compactification scale may be
considerably relaxed to TeV in a minimal scenario, in which the
SU(2) gauge boson is the only field that feels the presence of the fifth
dimension.Comment: 48 pages, LaTeX, 1 eps figure, typos correcte
Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.
The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy
Effect of an Internal Rotational Nonlinear Attachment on the Vortex-Induced Vibration of a Rigid Circular Cylinder in a Subcritical Incompressible Flow
“Vortex-induced vibration” (VIV) of a sprung cylinder is a familiar fluid-structure interaction phenomenon occurring over
a wide range of flow Reynolds number (Re). From a dynamical systems perspective, at critical Reynolds number (Rec), the fixed point
of the wake oscillator loses its stability resulting in limit-cycle oscillation, which is a well known supercritical Hopf bifurcation. In this
paper, we discuss the relation between the critical Reynolds number (Rec) for the Hopf bifurcation and the stiffness of the cylinder
for a sprung rigid circular cylinder. In addition, we introduce a rotational “nonlinear energy sink” (NES) into the system and study its
effect on Rec in subcritical flow regime.Ope
Torsion Constraints in the Randall--Sundrum Scenario
Torsion appears due to fermions coupled to gravity and leads to the strongest
particle physics bounds on flat extra dimensions. In this work, we consider
torsion constraints in the case of a warped extra dimension with brane and bulk
fermions. From current data we obtain a 3-sigma bound on the TeV--brane mass
scale scale \Lambda_\pi > 2.2 (10) TeV for the AdS curvature k=1 (0.01) in
(reduced) Planck units. If Dirac or light sterile neutrinos reside on the
brane, the bound increases to 17 (78) TeV.Comment: typos corrected, matches the Phys. Rev. D versio
Domain wall generation by fermion self-interaction and light particles
A possible explanation for the appearance of light fermions and Higgs bosons
on the four-dimensional domain wall is proposed. The mechanism of light
particle trapping is accounted for by a strong self-interaction of
five-dimensional pre-quarks. We obtain the low-energy effective action which
exhibits the invariance under the so called \tau-symmetry. Then we find a set
of vacuum solutions which break that symmetry and the five-dimensional
translational invariance. One type of those vacuum solutions gives rise to the
domain wall formation with consequent trapping of light massive fermions and
Higgs-like bosons as well as massless sterile scalars, the so-called branons.
The induced relations between low-energy couplings for Yukawa and scalar field
interactions allow to make certain predictions for light particle masses and
couplings themselves, which might provide a signature of the higher dimensional
origin of particle physics at future experiments. The manifest translational
symmetry breaking, eventually due to some gravitational and/or matter fields in
five dimensions, is effectively realized with the help of background scalar
defects. As a result the branons acquire masses, whereas the ratio of Higgs and
fermion (presumably top-quark) masses can be reduced towards the values
compatible with the present-day phenomenology. Since the branons do not couple
to fermions and the Higgs bosons do not decay into branons, the latter ones are
essentially sterile and stable, what makes them the natural candidates for the
dark matter in the Universe.Comment: 34 pages, 2 figures, JHEP style,few important refs. adde
Optimisations and challenges involved in the creation of various bioluminescent and fluorescent influenza a virus strains for in vitro and in vivo applications
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses. Copyright
- …