1,073 research outputs found

    The fate of ethane in Titan's hydrocarbon lakes and seas

    Full text link
    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.Comment: Accepted for publication in Icaru

    Discovery of seven volcanic outbursts on Io from an IRTF observation campaign 2016 to 2022

    Full text link
    This study analyzes near-infrared measurements of Io, Jupiter's moon, observed over 170 nights from 2016 to early 2022 using the NASA Infrared Telescope Facility (IRTF). During this period, seven new volcanic outbursts, the most energetic volcanic events on Io, were discovered and characterized, increasing the total number of observed outburst events from 18 to 25. We also present simplified criteria for the thermal detection of an outburst, requiring it to be both confined to a specific location of Io and above a threshold intensity in the Lp-band (3.8 micron). Our measurements use 2 to 5 micron photometry in eclipse, Jupiter occultation, and reflected sunlight. In addition to extending the observational dataset of Io's dynamic activity, these data provide insights into the temporal and spatial distribution of outbursts on Io. Notably, all seven outbursts were detected in Io's trailing hemisphere. These include Pillan Patera and a newly discovered repeating outburst location at Acala Fluctus. We add these events to the rare category of recurring outbursts, before which Tvashtar was the only known example. We observed that another outburst at UP 254W decreased in Lp-band intensity by a factor of two in 4.5 hours. In August 2021, Io exhibited high volcanic activity when two powerful outbursts rapidly appeared, propagating East. Our findings underscore IRTF's ongoing contributions to the study of Io

    Insights into Titan’s geology and hydrology based on enhanced image processing of Cassini RADAR data

    Get PDF
    The Cassini Synthetic Aperture Radar has been acquiring images of Titan's surface since October 2004. To date, 59% of Titan's surface has been imaged by radar, with significant regions imaged more than once. Radar data suffer from speckle noise hindering interpretation of small-scale features and comparison of reimaged regions for change detection. We present here a new image analysis technique that combines a denoising algorithm with mapping and quantitative measurements that greatly enhance the utility of the data and offers previously unattainable insights. After validating the technique, we demonstrate the potential improvement in understanding of surface processes on Titan and defining global mapping units, focusing on specific landforms including lakes, dunes, mountains, and fluvial features. Lake shorelines are delineated with greater accuracy. Previously unrecognized dissection by fluvial channels emerges beneath shallow methane cover. Dune wavelengths and interdune extents are more precisely measured. A significant refinement in producing digital elevation models is shown. Interactions of fluvial and aeolian processes with topographic relief is more precisely observed and understood than previously. Benches in bathymetry are observed in northern sea Ligeia Mare. Submerged valleys show similar depth suggesting that they are equilibrated with marine benches. These new observations suggest a liquid level increase in the northern sea, which may be due to changes on seasonal or longer timescales

    Titan Science with the James Webb Space Telescope (JWST)

    Get PDF
    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 ÎĽ\mum ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly faster read-out times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five to ten year expected lifetime for the observatory, for example monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA and next-generation ground-based telescopes (TMT, GMT, EELT).Comment: 50 pages, including 22 figures and 2 table

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit
    • …
    corecore